本书是国内外第一部系统介绍海水和内陆水域综合水产养殖原理和技术的专著,是作者及团队多年从事综合水产养殖科研工作成果的总结,其内容新颖、系统,包括我国综合水产养殖的历史沿革、原理和系统的分类、综合养殖中常用工具生物(大型海藻、刺参、滤食性鱼类和滤食性贝类)的养殖生态学、主养生物对虾的养殖生态学、综合水产养殖结构的优化、综合养殖水体的生产力与养殖容量,以及综合水产养殖在未来水产养殖业发展中的作用等。
样章试读
目录
前言
第 1章综合水产养殖的历史沿革与原理1
1.1中国综合水产养殖的定义和历史沿革 1
1.1.1 综合水产养殖的定义 1
1.1.2 中国综合水产养殖的历史沿革2
1.2综合水产养殖的基本原理 4
1.2.1 养殖废物的资源化利用 4
1.2.2 通过互补机制稳定改善水质5
1.2.3 养殖水体资源的充分利用7
1.2.4 生态防病9
1.2.5 其他原理9
1.3综合水产养殖中的辩证思维 10
第 2章综合水产养殖系统的分类 12
2.1水产养殖系统的分类 12
2.1.1 水产养殖系统的传统分类 12
2.1.2 基于系统能量来源的分类 13
2.1.3 基于系统代谢特征的分类 15
2.1.4 基于生态限制因子的分类 15
2.2综合水产养殖系统的分类 20
2.2.1 化学功能互补综合型 20
2.2.2 养殖种类综合型 22
2.2.3 系统综合型 24
第 3章主养动物 ——对虾养殖生态学 27
3.1对虾对环境因子的适应性 28
3.1.1 对虾对温度的适应性 28
3.1.2 对虾对盐度的适应性 33
3.1.3 对虾对水环境中主要阳离子的适应性 35
3.1.4 对虾对光的适应性 45
3.1.5 去眼柄对凡纳滨对虾稚虾的影响 50
3.2环境因子周期性波动对养殖对虾的影响 51
3.2.1 温度周期性波动对中国明对虾的影响 52
3.2.2 盐度周期性波动对中国明对虾的影响 58
3.2.3 水环境中 Ca2+浓度波动对凡纳滨对虾的影响 61
3.2.4 水环境 pH波动对凡纳滨对虾的影响 64
3.2.5 光照周期性波动对凡纳滨对虾的影响 66
3.3中国明对虾摄食生态学 70
3.3.1 半精养系统中天然饵料与人工饲料在对虾生长中的贡献 70
3.3.2 中国明对虾对饵料的选择性和利用 71
3.3.3 不同饵料对中国明对虾能量收支和身体生化组成的影响 73
3.3.4 摄食水平对中国明对虾生长和蜕壳的影响 74
3.3.5 中国明对虾的表观特殊动力作用 76
3.3.6 中国明对虾能量代谢与生长的关系 76
3.3.7 饵料种类和摄食水平对中国明对虾蜕壳的影响 80
3.4中国明对虾继饥饿之后的补偿生长 82
3.4.1 饥饿时间对中国明对虾补偿生长的影响 84
3.4.2 限食水平对中国明对虾补偿生长的影响 87
3.4.3 温度对中国明对虾补偿生长的影响 88
3.4.4 投喂周期对中国明对虾补偿生长的影响 89
3.4.5 蛋白质限制对中国明对虾补偿生长的影响 91
第 4章工具生物之一 ——大型海藻养殖生态学 94
4.1水域生态系统的生物操纵 94
4.2光照、温度和盐度对大型海藻的影响 96
4.2.1 光照对大型海藻的影响 96
4.2.2 温度对大型海藻的影响 102
4.2.3 光照和温度对海藻影响中的相互作用 104
4.2.4 盐度和温度对海藻影响中的相互作用 108
4.3大型海藻营养吸收动力学 110
4.3.1 大型海藻的营养需求 110
4.3.2 铁限制对大型海藻的影响 111
4.3.3 大型海藻对氮的吸收动力学 115
4.3.4 大型海藻对磷的吸收动力学 122
4.4大型海藻对环境因子节律性变动的响应 126
4.4.1 温度日节律波动对海藻生长的影响 127
4.4.2 盐度日节律波动对大型海藻生长的影响 129
4.4.3 节律性干出对海藻生长的影响 129
4.4.4 光照日节律波动对孔石莼生长的影响 131
4.5大型海藻与微藻的相互作用 134
4.5.1 大型海藻与微藻的营养竞争 134
4.5.2 大型海藻对微藻的克生作用 138
第 5章工具生物之二 ——滤食性鱼类养殖生态学 144
5.1滤食性鱼类的摄食能力 144
5.1.1 几种养殖的滤食性鱼类简介 145
5.1.2 滤食性鱼类摄食的数学表达 146
5.1.3 滤食性鱼类吸水量和对食粒的滤取效率 146
5.1.4 浮游动物对鱼类摄食的逃避 147
5.1.5 滤食性鱼类的摄食能力 148
5.1.6 滤食性鱼类的摄食节律 149
5.1.7 鲢、鳙对食粒的选择性 149
5.1.8 水体饵料组成对鲢、鳙食性的影响 150
5.1.9 水体中泥沙等微粒对鲢、鳙食性的影响 150
5.2滤食性鲢呼吸与摄食的关系 152
5.2.1 低溶氧水平下鲢摄食与呼吸的关系 152
5.2.2 浮游植物密度对鲢呼吸与摄食的影响 157
5.2.3 不同粒径浮游植物对鲢摄食和呼吸的影响 161
5.2.4 饥饿对鲢摄食和呼吸的影响 162
5.3滤食性鱼类放养对水质的影响 165
5.3.1 放养滤食性鱼类对浮游生物群落的影响 165
5.3.2 滤食性动物对养殖水体浮游细菌的影响 171
5.3.3 放养鲢对水体营养盐分布和物质循环格局的影响 172
5.4养殖水体鲢、鳙群体生产量的估计 173
5.4.1 鲢、鳙的生长 173
5.4.2 放养水体鲢、鳙生产量的估算 174
5.4.3 放养水体鲢、鳙群体最大持续渔获量 177
第 6章工具生物之三 ——滤食性贝类养殖生态学 178
6.1滤食性贝类的摄食 178
6.1.1 滤食性贝类滤食器官及滤食的数学表达 178
6.1.2 滤食性贝类的摄食 181
6.2滤食性贝类的呼吸和排泄 186
6.2.1 海湾扇贝和太平洋牡蛎的呼吸与排泄 186
6.2.2 菲律宾蛤仔和栉孔扇贝的呼吸与排泄 188
6.2.3 温度和规格对缢蛏耗氧率和排氨率的影响 189
6.3滤食性贝类对水质和底质的影响 189
6.3.1 太平洋牡蛎对养虾池塘水化学状况的影响 189
6.3.2 太平洋牡蛎对养虾池塘底质的影响 191
6.3.3 海湾扇贝对海水养殖池塘水质的影响 193
6.3.4 菲律宾蛤仔对海水池塘水质的影响 194
6.3.5 海湾扇贝、缢蛏、罗非鱼对养虾池塘浮游生物影响的比较 195
6.4滤食性贝类代谢对浮游植物的增殖作用 197
第 7章工具生物之四 ——刺参养殖生态学 200
7.1刺参养殖池塘的环境状况 201
7.1.1 刺参养殖池塘的理化状况 201
7.1.2 刺参养殖池塘的浮游植物 202
7.1.3 刺参养殖池塘中的沉降作用 204
7.1.4 刺参粗养池塘底泥-水界面营养盐与有机碳通量 206
7.1.5 温度和溶解氧对池塘沉积物-水界面营养盐通量的影响 208
7.1.6 刺参养殖池塘底泥的硝化和反硝化作用 209
7.2刺参养殖对池塘底质的影响 210
7.3温度、盐度和光照对刺参的影响 211
7.3.1 温度对刺参的影响 212
7.3.2 盐度对刺参的影响 217
7.3.3 光照对刺参的影响 219
7.4刺参对不同参礁的趋向性 232
7.4.1 不同材料的人工参礁对刺参聚集行为的影响 233
7.4.2 不同颜色的人工参礁对刺参聚集行为和生长的影响 233
7.4.3 在水中培养不同时间的参礁对刺参聚集行为的影响 234
7.5刺参生长的个体变异 235
7.5.1 密度和规格对刺参个体生长变异的影响 235
7.5.2 单个体饲养条件下刺参的个体生长变异 239
7.5.3 物理接触对刺参个体生长变异的影响 241
7.5.4 密度胁迫对刺参内分泌的影响 243
7.5.5 限定食物资源下密度对刺参个体生长的影响 245
7.6环保型刺参饲料研究 248
7.6.1 黄土替代海泥的效果 248
7.6.2 鲜活硅藻替代鼠尾藻粉的效果 250
7.6.3 光照强度和浓缩方法对硅藻饵料效果的影响 253
7.6.4 投喂鲜活硅藻对池塘水质和刺参生长的影响 257
7.6.5 投喂鲜活硅藻对池塘物质收支的影响 262
第 8章综合水产养殖结构的优化 269
8.1综合水产养殖结构优化的原理和方法 269
8.1.1 综合水产养殖结构优化的原理 269
8.1.2 综合水产养殖结构优化的方法 271
8.2水库综合养殖结构的优化 273
8.3淡水池塘综合养殖结构的优化 275
8.3.1 草鱼、鲢和凡纳滨对虾综合养殖结构优化 275
8.3.2 草鱼、鲢和鲤综合养殖结构优化 278
8.4海水池塘对虾综合养殖结构的优化 282
8.4.1 海水池塘中国明对虾综合养殖结构的优化 282
8.4.2 海水池塘凡纳滨对虾综合养殖结构的优化 284
8.4.3 海水池塘对虾综合养殖的结构与效益比较 286
8.5刺参池塘综合养殖结构优化 287
8.5.1 刺参与中国明对虾混养效果 287
8.5.2 刺参与栉孔扇贝混养的效果 288
8.5.3 刺参综合养殖的环境效应 288
8.6池塘内环联养殖模式 290
8.6.1 同池混养模式与分池环联养殖模式的比较 290
8.6.2 对虾与罗非鱼池塘内环联养殖模式 292
8.6.3 内环联养殖模式中罗非鱼与对虾的结构优化 293
8.6.4 内环联养殖模式中罗非鱼对浮游生物的影响 295
第 9章综合养殖水体的生产力与养殖容量 300
9.1养殖水域生产力和养殖容量及其影响因素 300
9.1.1 养殖水域的生产力 301
9.1.2 养殖水域的养殖容量 302
9.2综合养殖池塘的生产力 303
9.3综合养殖水域的养殖容量 307
9.3.1 水库对投饲网箱养鲤的养殖容量 308
9.3.2 海水池塘对虾养殖的养殖容量 310
第 10章综合水产养殖的现实意义 314
10.1 我国水产养殖业发展的趋势与面临的挑战 315
10.1.1 我国水产养殖业的现状与发展趋势 315
10.1.2 我国水产养殖业发展面临的挑战 317
10.2 我国水产养殖业的功能定位 318
10.2.1 水产养殖系统的基本功能 318
10.2.2 从国际粮食恐慌看水产养殖业的基本定位 319
10.2.3 水产养殖业中的“耗粮黑洞” 320
10.3 水产养殖集约化发展的生态经济学思考 321
10.3.1 水产养殖集约化是一把双刃剑 321
10.3.2 不同生物养殖系统的能值分析 322
10.3.3 刺参的不同养殖模式可持续性评估 323
10.3.4 不同刺参养殖系统的生命周期评价 325
10.4 我国水产养殖业的发展路径 329
10.5 综合养殖理念的现实意义 329
10.5.1 中西方对规模化生产活动的认识比较 329
10.5.2 陆基阳光工厂化养殖 331
10.5.3 开放海域的碳汇渔业与综合养殖 332
10.6 我国水产养殖业可持续发展的保障措施 333
10.6.1 发展理念和惯性思维的转变 333
10.6.2 管理体制保障 334
10.6.3 学科保障 335
10.6.4 法律保障 335
主要参考文献 336
彩图
Preface Foreword
1 History and principles of integrated aquaculture (INTAQ) 1
1.1 Definition and history of INTAQ in China 1
1.1.1 Definition of INTAQ 1
1.1.2 History of INTAQ in China 2
1.2 Principles of INTAQ 4
1.2.1 Waste reclamation 4
1.2.2 Water quality maintenance through complementary mechanism 5
1.2.3 Making full use of the resources in the waters 7
1.2.4 Diseases prevention ecologically 9
1.2.5 Others 9
1.3 Dialectical way of thinking in INTAQ 10
2 Classification of INTAQ systems 12
2.1 Classification of aquaculture systems 12
2.1.1 Traditional classification of aquaculture systems 12
2.1.2 Classification based on energy sources 13
2.1.3 Classification based on metabolic features 15
2.1.4 Classification based on ecological limiting factors 15
2.2 Classification of INTAQ systems 20
2.2.1 Complementary chemical functions integration 20
2.2.2 Species integration 22
2.2.3 Systems integration 24
3 Aquaculture ecology of main target species shrimp 27
3.1 Shrimp adaptability to environmental factors 28
3.1.1 Adaptability to water temperature 28
3.1.2 Adaptability to water salinity 33
3.1.3 Adaptability to main cations in water 35
3.1.4 Adaptability to light 45
3.1.5 Effects of eyestalk ablation on juvenile L. vannamei 50
3.2 Periodic fluctuation of environmental factors on shrimp 51
3.2.1 Periodic fluctuation of water temperature on F. chinensis 52
3.2.2 Periodic fluctuation of water salinity on F. chinensis 58
3.2.3 Periodic fluctuation of Ca2+ concentration in water on L. vannamei 61
3.2.4 Periodic fluctuation of pH value in water on L. vannamei 64
3.2.5 Periodic fluctuation of photoperiod on L. vannamei 66
3.3 Feeding ecology of Chinese shrimp F. chinensis 70
3.3.1 Contribution of different carbon resources 70
3.3.2 Selection and utilization of the shrimp to various foods 71
3.3.3 Effects of various foods to energy budget 73
3.3.4 Effects of feeding levels on growth and molting 74
3.3.5 Specific dynamic action 76
3.3.6 Relationship of energy metabolism and growth 76
3.3.7 Effects of diets and feeding levels on growth and molting 80
3.4 Compensatory growth of Chinese shrimp after starvation 82
3.4.1 Effects of starvation time on compensatory growth 84
3.4.2 Effects of feeding level on compensatory growth 87
3.4.3 Effects of water temperature on compensatory growth 88
3.4.4 Effects of starvation-and-refeeding cycles on compensatory growth 89
3.4.5 Effects of protein limitation in diet on compensatory growth 91
4 Aquaculture ecology of macro-algae 94
4.1 Biomanipulation of water ecosystems 94
4.2 Effects of light, temperature and salinity on macro-algae 96
4.2.1 Effects of light on macro-algae 96
4.2.2 Effects of temperature on macro-algae 102
4.2.3 Interaction between light and temperature on macro-algae 104
4.2.4 Interaction between temperature and salinity on macro-algae 108
4.3 Nutrient uptake kinetics of macro-algae 110
4.3.1 Nutrient requirement of macro-algae 110
4.3.2 Response of macro-algae to iron stress 111
4.3.3 Nitrogen uptake kinetics of macro-algae 115
4.3.4 Phosphorous uptake kinetics of macro-algae 122
4.4 Response of macro-algae to diel fluctuation of environmental factors 126
4.4.1 Effect of circadian rhythms of temperature 127
4.4.2 Effects of circadian rhythms of salinity 129
4.4.3 Effects of periodical emersion 129
4.4.4 Effects of circadian rhythms of light 131
4.5 Interaction between macro-algae and micro-algae 134
4.5.1 Nutrient competition between macro-algae and micro-algae 134
4.5.2 Allelopathic effects macro-algae on micro-algae 138
5 Aquaculture ecology of filter-feeding fish 144
5.1 Feeding capability of filter-feeding fish 144
5.1.1 Commercially important filter-feeders 145
5.1.2 Mathematical expression of filter-feeding fish’s feeding 146
5.1.3 Suction volume and filtering efficiency 146
5.1.4 Escape capability of zooplankton to fish feeding 147
5.1.5 Feeding capability of filter-feeding fish 148
5.1.6 Daily rhythm of feeding of filter-feeder 149
5.1.7 Food selection of silver carp and bighead carp 149
5.1.8 Effects of plankton composition on the feeding habits of the carps 150
5.1.9 Effects of suspended sediments on the feeding habits of the carps 150
5.2 Relationship between respiration and feeding of silver carp 152
5.2.1 The relationship between respiration and feeding at low dissolved oxygen 152
5.2.2 Effects of phytoplankton biomass on respiration and feeding 157
5.2.3 Effects of phytoplankton size on respiration and feeding 161
5.2.4 Effects of starvation on respiration and feeding 162
5.3 Effects of filter-feeder stocking on water quality 165
5.3.1 Effects of silver and bighead carp stocking on plankton community 165
5.3.2 Effects of filter-feeder stocking on planktonic bacteria 171
5.3.3 Effects of silver carp stocking on nutrient distribution and material circulation 172
5.4 Estimation of silver carp and bighead carp production in aquaculture waters 173
5.4.1 Growth of silver carp and bighead carp 173
5.4.2 Estimation of silver carp and bighead carp production 174
5.4.3 Maximum sustainable yield of stocking the carps in reservoir 177
6 Aquaculture ecology of filter-feeding molluscs 178
6.1 Feeding of filter-feeding molluscs 178
6.1.1 Mathematical expression of filter-feeding molluscs 178
6.1.2 Feeding of filter-feeding molluscs 181
6.2 Respiration and excretion of filter-feeding molluscs 186
6.2.1 Respiration and excretion of Argopecten irradias and Crassostrea gigas 186
6.2.2 Respiration and excretion of Ruditapes philippinarum and Chlamys farreri 188
6.2.3 Effects of water temperature and body size on O2 consumption and NH3 excretion of Sinonovacula constricta 189
6.3 Effects of filter-feeding molluscs on water quality and sediment quality 189
6.3.1 Effects of C. gigas on water chemical condition of shrimp farming pond 189
6.3.2 Effects of C. gigas on sediment quality of shrimp farming pond 191
6.3.3 Effects of Argopecten irradias on water quality of mariculture pond 193
6.3.4 Effects of Ruditapes philippinarum on water quality of mariculture pond 194
6.3.5 Comparison of effects of Argopecten irradias, Sinonovacula constricta and tilapia on plankton of mariculture pond 195
6.4 Multiplication effect of phytoplankton caused by filter-feeding molluscs excretion 197
7 Aquaculture ecology of sea cucumber Apostichopus japonicus 200
7.1 Environment conditions in sea cucumber culture pond 201
7.1.1 Physical and chemical conditions in sea cucumber culture pond 201
7.1.2 Phytoplankton in sea cucumber culture pond 202
7.1.3 Sedimentation in sea cucumber culture pond 204
7.1.4 Sediment-water fluxes of nutrients and dissolved organic carbon in extensive sea cucumber culture pond 206
7.1.5 Effects of water temperature and DO on sediment-water fluxes of nutrients 208
7.1.6 Nitrification and denitrification in sea cucumber culture pond 209
7.2 Effects of sea cucumber on sediment quality of pond 210
7.3 Effects of water temperature, salinity and light on sea cucumber 211
7.3.1 Effects of water temperature on sea cucumber 212
7.3.2 Effects of salinity on sea cucumber 217
7.3.3 Effects of light on sea cucumber 219
7.4 Effects of different artificial shelters on sea cucumber behavior 232
7.4.1 Effects of different materials of artificial shelters on sea cucumber 233
7.4.2 Effects of artificial shelter colors on sea cucumber 233
7.4.3 Effects of incubation time of artificial shelters on sea cucumber 234
7.5 Individual variation in growth of sea cucumber 235
7.5.1 Effects of stocking density and size on the individual variation in growth 235
7.5.2 Individual variation in growth of sea cucumber housed individually 239
7.5.3 Effects of physical isolation on individual variation in growth 241
7.5.4 Effects of stocking density on endocrine performance of sea cucumber 243
7.5.5 Effects of stocking density on individual variation in growth under food limitation 245
7.6 Environmental friendly feed for sea cucumber 248
7.6.1 Effects of yellow soil substituting for see mud 248
7.6.2 Effects of fresh diatom substituting for macroalgae powder 250
7.6.3 Effects of light intensity and concentration method on diatom efficiency as feed 253
7.6.4 Effects of delivering fresh diatom on water quality and growth of sea cucumber 257
7.6.5 Effects of delivering fresh diatom on martial budget of pond 262
8 Structure optimization of integrated aquaculture 269
8.1 Ecological rationales and methods for structure optimization of integrated aquaculture 269
8.1.1 Ecological rationales for structure optimization of integrated aquaculture 269
8.1.2 Methods for structure optimization of integrated aquaculture 271
8.2 Structure optimization of integrated aquaculture in reservoir 273
8.3 Structure optimization of integrated aquaculture in fresh water pond 275
8.3.1 Structure optimization of integration of grass carp, silver carp and shrimp 275
8.3.2 Structure optimization of integration of grass carp, silver carp and common carp 278
8.4 Structure optimization of integrated aquaculture in sea water pond 282
8.4.1 Structure optimization of integrated aquaculture for Fenneropenaeus chinensis 282
8.4.2 Structure optimization of integrated aquaculture for Litopenaeus vannamei 284
8.4.3 Optimized structure and efficiencies of shrimp integrated aquaculture in ponds 286
8.5 Structure optimization of sea cucumber integrated aquaculture in pond 287
8.5.1 Effects of integration of sea cucumber and shrimp 287
8.5.2 Effects of integration of sea cucumber and scallop 288
8.5.3 Environmental effects of sea cucumber integrated aquaculture 288
8.6 Inner partitioned polyculture model 290
8.6.1 Comparative studies between inner partitioned and partitioned polyculture models 290
8.6.2 Inner partitioned polyculture of shrimp and tilapia in pond 292
8.6.3 Structure optimization of inner partitioned polyculture of shrimp and tilapia 293
8.6.4 Effects of tilapia on plankton community in inner partitioned polyculture pond 295
9 Productivity and carrying capacity of integrated aquaculture waters 300
9.1 Productivity and carrying capacity of aquaculture waters 300
9.1.1 Productivity of aquaculture waters 301
9.1.2 Carrying capacity of aquaculture waters 302
9.2 Productivity of integrated aquaculture pond 303
9.3 Carrying capacity of integrated aquaculture waters 307
9.3.1 Carrying capacity of reservoir for fish net culture 308
9.3.2 Carrying capacity of sea water pond for shrimp farming 310
10 Realistic significance of integrated aquaculture 314
10.1 Status and constrains of aquaculture development in China 315
10.1.1 Status and trends of aquaculture development 315
10.1.2 Constrains of aquaculture development 317
10.2 Functions of Chinese aquaculture 318
10.2.1 Basic functions of aquaculture systems 318
10.2.2 Basic functions of aquaculture from international food shortage of view 319
10.2.3 “Food trap” in aquaculture 320
10.3 Ponder over aquaculture intensification eco-economically 321
10.3.1 Aquaculture intensification . a double-edged sword 321
10.3.2 Emergy analysis of different species aquaculture systems 322
10.3.3 Sustainability evaluation of different systems for sea cucumber farming based on emergy theory 323
10.3.4 Life cycle assessment of different systems for sea cucumber farming 325
10.4 Development path of Chinese aquaculture 329
10.5 Realistic significance of dialectical thought in aquaculture 329
10.5.1 Comparison between eastern and western in the attitudes of scale production 329
10.5.2 Land-based Indoor Solar Aquaculture Systems (LISAS) 331
10.5.3 Carbon sequestration mariculture in open seas 332
10.6 Safeguard measures for sustainable development of aquaculture 333
10.6.1 Changes of development ideas 333
10.6.2 Safeguards of management regimes 334
10.6.3Safeguards of disciplines 335
10.6.4 Safeguards of laws and regulation 335
References 336
Plate]]>