0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 应用数学 > 高维哈达码矩阵理论与应用(英文版)

浏览历史

高维哈达码矩阵理论与应用(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
高维哈达码矩阵理论与应用(英文版)
  • 书号:7030067827
    作者:杨义先
  • 外文书名:
  • 装帧:
    开本:B5
  • 页数:332
    字数:200000
    语种:
  • 出版社:科学出版社
    出版时间:2006-07-29
  • 所属分类:O15 代数、数论、组合理论
  • 定价: ¥0.00元
    售价: ¥0.00元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

用户评论

全部咨询

This is the first book on higher-dimensional Hadamard matrices and their applications in telecommunications and information security.It is divided into three parts according to the dimensions of the Hadamard matrices treated.The first part stresses the classical 2-dimensional Walsh and Hadamard matrices.Fast algorithms,updated constructions,exitence results,and their generalised forms are presented.The second part deals with the lower-dimensional cases,e.g.3-,4-,and 6-dimensional Walsh and Hadamard matrices and transforms.The third part iS the key part.which investigates the N-dimensional Hadamard matrices of order 2,which have been proved equivalent to the well known H-Boolean functions and the perfect binary arrays of order 2.After introducing the definitions of the regular,proper,improper,and generalized higher-dimensional Hadamard matrices,many theorems about the existence and constructions are presented.Perfec binary arrays,generalized perfect arrays,and the orthogonal designs are also used to construct new higher-dimensional Hadamard matrices.The many open problems in the study ofthe theory ofhigher-dimensional Hadamard matrices which are also listed in the book will encourage further research.
This volume will appeal to researchers and signal processing,coding,information security graduate students whose work involves and applied discrete mathematics.
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Preface
    Part I Two-Dimensional Cases
    Chapter 1 Walsh Matrices
    1.1 Walsh Functions and Matrices
    1.1.1 Definitions
    1.1.2 Ordering
    1.2 Orthogonality and Completeness
    1.2.1 Orthogonality
    1.2.2 Completeness
    1.3 Walsh Transforms and Fast Algorithms
    1.3.1 Walsh Ordered Walsh-Hadamard Transforms
    1.3.2 Hadamard Ordered Walsh-Hadamard Transforms
    Bibliography
    Chapter 2 Hadamard Matrices
    2.1 Definitions
    2.1.1 Hadamard Matrices
    2.1.2 Hadamard Designs
    2.1.3 Williamson Matrices
    2.2 Construction
    2.2.1 General Constructions
    2.2.2 Amicable Hadamard Matrices
    2.2.3 Skew Hadamard Matrices
    2.2.4 Symmetric Hadamard Matrices
    2.3 Existence
    2.3 Orthogonal Designs and Hadamard Matrices
    2.3.2 Existence Results
    Bibliography
    Part II Lower-Dimensional Cases
    Chapter 3 Three-Dimensional Hadamard Matrices
    3.1 Definitions and Constructions
    3.1.1 Definitions
    3.1.2 Constructions Based on Direct Multiplications
    3.1.3 Constructions Based on 2-Dimensional Hadamard Matrices
    3.2 Three-Dimensional Hadamard Matrices of Order 4k+2
    3.3 Three-Dimensional Hadamard Matrices of Order 4k
    3.3.1Recursive Constructions of Perfect Binary Arrays
    3.3.2 Quasi-Perfect Binary Arrays
    3.3.3 3-Dimensional Hadamard Matrices Based on PBA(2的m次方,2的m次方)and PBA(3.2的m次方,3.2的m次方)
    3.4 Three-Dimensional Walsh Matrices
    3.4.1 Generalized 2-Dimensional、valsh Matrices
    3.4.2 3-Dimensional Walsh Matrices
    3.4.3 3-Dimensional Pan-Walsh Matrices
    3.4.4 Analytic Representations
    Bibliography
    Chapter 4 Multi-Dimensional Walsh-Hadamard Transforms
    4.1 Conventional 2-Dimensional Walsh-Hadamard Transforms
    4.1.1 2-Dimensional Wlalsl-Hadamard Transforms
    4.1.2 Definitions of 4-Dimensional Hadamard Matrices
    4.2 Algebraical Theory of Higher-Dimensional Matrices
    4.3 Multi-Dimensional Walsh-Hadamard Transforms
    4.3.1 Tnansforms Based on 3-Dimensional Hadamard Matrices
    4.3.2 nansforms Based on 4-Dimensional Hadamard Matrices
    4.3.3 nansforms Based on 6-Dimensional Hadamard Matrices
    Bibliography
    Part III General Higher-Dimensional Cases
    Chapter 5 n-Dimensional Hadamard Matrices of Order 2
    5.1 Constructions of 2的n次方 Hadamard Matrices
    5.1.1 Equivalence Between 2的n次方 Hadamard Matrices and H-Boolean Functions
    5.1.2 Existence of H-Boolean Functions
    5.1.3 Constructions of H-Boolean Functions
    5.2 Enumeration of 2的n次方Hadamard Matrices
    5.2.1 Classification of 2的4次方Hadamard Matrices
    5.2.2 Enumeration of 2的5次方Hadamard Matrices
    5.2.3 Enumeration of General 2的n次方Hadamard Matrices
    5.3 Applications
    5.3.1 Strict Avalanche Criterion and H-Boolean Functions
    5.3.2 Bent Functions and H-Boolean Functions
    5.3.3 Reed-Muller Codes and H-Boolean Functions
    Bibliography
    Chapter 6 General Higher-Dimensional Hadamard Matrices
    6.1 Definitions,Existences and Constructions
    6.1.1 n-Dimensional Hadamard Matrices of Order 2k
    6.1.2 Proper and Improper n-Dimensional Hadamard Matrices
    6.1.3 Generalized Higher-Dimensional Hadamard Matrices
    6.2 Higher-Dimensional Hadamard Matrices Based on Perfect Binary Arrays
    6.2.1 n-Dimensional Hadamard Matrices Based on PBAs
    6.2.2 Construction and Existence of Higher-Dimensional PBAs
    6.2.3 Generalized Perfect Arrays
    6.3 Higher-Dimensional Hadamard Matrices Based on Orthogonal Designs
    6.3.1 Definitions of Orthogonality
    6.3.2 Higher-Dimensional Orthogonal Designs
    6.3.3 Higher-Dimensional Hadamard Matrices from Orthogonal Designs
    Bibliography
    Concluding Questions
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证