0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 计算数学 > 结构动态设计的矩阵摄动理论(英文版)

浏览历史

结构动态设计的矩阵摄动理论(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
结构动态设计的矩阵摄动理论(英文版)
  • 书号:9787030186980
    作者:陈塑寰
  • 外文书名:
  • 装帧:
    开本:B5
  • 页数:256
    字数:304000
    语种:
  • 出版社:科学出版社
    出版时间:2007-03-22
  • 所属分类:O34 固体力学
  • 定价: ¥68.00元
    售价: ¥53.72元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Preface
    Chapter 1 Finite Element Method for Vibration Analysis of
    Structures
    1.1 Introduction
    1.2 The Hamilton Variational Principle for Discrete Systems
    1.3 Finite Element Method for Structural Vibration Analysis
    1.4 The Mechanics Characteristic Matrices of Elements
    1.4.1 Consistent Mass Matrix of a Rod Element
    1.4.2 Consistent Mass Matrix of a Beam Element
    1.4.3 Plate Element Vibrating in the Plane
    1.4.4 Plate Element in Bending Vibration
    1.4.5 Lumped Mass Modal
    1.5 Vibration Eigenproblem of Structures
    1.6 Orthogonality of Modal Vectors
    1.7 The Rayleigh-Ritz Analysis
    1.8 The Response to Harmonic Excitation
    1.9 Response to Arbitrary Excitation
    1.10 Direct Integration Methods for Vibration Equations
    1.10.1 The Central Difference Method
    1.10.2 The Wilson -θ Method
    1.10.3 The Newmark Method
    1.11 Direct Integration Approximation and Load Operators in Modal
    Coordinate System
    1.11.1 The Central Difference Method
    1.11.2 The Wilson -θ Method
    1.11.3 The Newmark Method
    Chapter 2 Matrix Perturbation Theory for Distinct Eigenvalues
    2.1 Introduction
    2.2 Matrix Perturbation for Distinct Eigenvalues
    2.2.1 The 1st Order Perturbation
    2.2.2 The 2nd Order Perturbation
    2.2.3 Computing for the Expansion Coefficients c1i and c2i
    2.2.4 Numerical Examples
    2.3 The Improvement for Matrix Perturbation
    2.3.1 The William B. Bickford Method
    2.3.2 The Mixed Method of Matrix Perturbation and Rayleigh’s Quotient
    2.3.3 Numerical Example
    2.4 High Accurate Modal Superposition for Derivatives of Modal Vectors
    2.4.1 The B. P. Wang Method
    2.4.2 High Accurate Modal Superposition
    2.4.3 Numerical Example
    2.5 Mixed Basis Superposition for Eigenvector Perturbation
    2.5.1 Constructing for Mixed-Basis
    2.5.2 The 1st Order Perturbation Using Mixed-Basis Expansion
    2.5.3 The 2nd Order Perturbation Using Mixed-Basis Expansion
    2.5.4 Numerical Example
    2.6 Eigenvector Derivatives for Free-Free Structures
    2.6.1 The Theory Analysis
    2.6.2 Effect of Eigenvalue Shift μ on the Convergent Speed
    2.6.3 Numerical Example
    2.7 Extracting Modal Parameters of Free-Free Structures from Modes of Constrained
    Structures Using Matrix Perturbation
    2.8 Determination of Frequencies and Modes of Free-Free Structures Using
    Experimental Data for the Constrained Structures
    2.8.1 Generalized Stiffness, Mass, and the Response to Harmonic Excitation for
    Free-Free Structures
    2.8.2 Przemieniecki’s Method (Method 1)
    2.8.3 Chen-Liu Method (Method 2)
    2.8.4 Zhang-Zerva Method (Method 3)
    2.8.5 Further Improvement on Zhang-Zerva Method (Method 4)
    2.8.6 Numerical Example
    2.9 Response Analysis to Harmonic Excitation Using High Accurate Modal
    Superposition
    2.9.1 High Accurate Modal Superposition (HAMS)
    2.9.2 Numerical Examples
    2.9.3 Extension of High Accurate Modal Superposition
    2.10 Sensitivity Analysis of Response Using High Accurate Modal
    Superposition
    Chapter 3 Matrix Perturbation Theory for Multiple Eigenvalues
    3.1 Introduction
    3.2 Matrix Perturbation for Multiple Eigenvalues
    3.2.1 Basic Equations
    3.2.2 Computing for the 1st Order Perturbation of Eigenvalues
    3.2.3 Computing for the 1st Order Perturbation of Eigenvectors
    3.3 Approximate Modal Superposition for the 1st Order Perturbation of
    Eigenvectors of Repeated Eigenvalues
    3.4 High Accurate Modal Superposition for the 1st Order Perturbation of
    Eigenvectors of Repeated Eigenvalues
    3.5 Exact Method for Computing Eigenvector Derivatives of repeated
    Eigenvalues
    3.5.1 Theoretical Background
    3.5.2 A New Method for Computing vi
    3.5.3 Numerical Example
    3.6 Hu’s Method for Computing the 1st Order Perturbation of Eigenvectors
    3.6.1 Hu’s Small Parameter Method
    3.6.2 Improved Hu’s Method
    Chapter 4 Matrix Perturbation Theory for Close Eigenvalues
    4.1 Introduction
    4.2 Behavior of Modes of Close Eigenvalues
    4.3 Identification of Modes of Close Eigenvalues
    4.4 Matrix Perturbation for Close Eigenvalues
    4.4.1 Preliminary Considerations
    4.4.2 Spectral Decomposition of Matrices K and M
    4.4.3 Matrix Perturbation for Close Eigenvalues
    4.5 Numerical Example
    4.6 Derivatives of Modes for Close Eigenvalues
    Chapter 5 Matrix Perturbation Theory for Complex Modes
    5.1 Introduction
    5.2 Basic Equations
    5.3 Matrix Perturbation for Distinct Eigenvalues
    5.3.1 Basic Equations of Matrix Perturbation for Complex Modes
    5.3.2 The 1st Order Perturbation 136
    5.3.3 The 2nd Order Perturbation 137
    5.3.4 Computing for Coefficients C1ii,D1ii,C2ii and D2ii
    5.4 High Accurate Modal Superposition for Eigenvector Derivatives
    5.4.1 Improved Modal Superposition
    5.4.2 High Accurate Modal Superposition
    5.4.3 Numerical Example
    5.5 Matrix Perturbation for Repeated Eigenvalues of Nondefective Systems 146
    5.5.1 Basic Equations
    5.5.2 The 1st Order Perturbation of Eigenvalues
    5.5.3 The 1st Order Perturbation of Eigenvectors
    5.6 Matrix Perturbation for Close Eigenvalues
    5.6.1 Spectral Decomposition of Matrices A and B
    5.6.2 Matrix Perturbation for Close Eigenvalues
    Chapter 6 Matrix Perturbation Theory for Linear Vibration Defective Systems
    6.1 Introduction
    6.2 Generalized Modal Theory of Defective Systems
    6.3 Singular Value Decomposition (SVD) and Eigensolutions
    6.4 The SVD Method for Modal Analysis of Defective Systems
    6.4.1 Rank Analysis for Identification of Defectiveness
    6.4.2 SVD Method for Identification of Defectiveness and Modal Analysis
    6.5 Invariant Subspace Recursive Method for Computing the Generalized Modes
    6.5.1 Invariant Subspace Recursive Relationship
    6.5.2 SVD and Reductive Method for Computing the Orthogonal Basis of Invariant Subspace
    6.5.3 Numerical Example
    6.6 Matrix Perturbation for Defective Systems
    6.6.1 The Puiseux Expansion for Eigensolutions of Defective Systems
    6.6.2 Improved perturbation for Defective Eigenvalues
    6.6.3 Numerical Examples
    6.7 Matrix Perturbation for Generalized Eigenproblem of Defective Systems
    6.7.1 Perturbation of Defective Eigenvalues
    6.7.2 Improved Perturbation for Defective Eigenvalues
    6.7.3 Numerical Example
    Chapter 7 Matrix Perturbation Theory for Near Defective Systems 187
    7.1 Introduction
    7.2 Relationship Between Repeated and Close Eigenvalues and Its Identification
    7.2.1 Relationship Between Repeated and Close Eigenvalues
    7.2.2 Identification for Repeated Eigenvalues
    7.2.3 Identification for Close Eigenvalues
    7.3 Matrix Perturbation for Near Defective Systems
    7.3.1 Matrix Perturbation for Standard Eigenproblem of Near Defective Systems
    7.3.2 Matrix Perturbation for Generalized Eigenproblem of Near Defective Systems
    7.4 Numerical Example
    Chapter 8 Random Eigenvalue Analysis of Structures with Random Parameters
    8.1 Introduction
    8.2 Random Finite Element Method for Random Eigenvalue Analysis
    8.3 Random Perturbation for Random Eigenvalue Analysis
    8.4 Statistical Properties of Random Eigensolutions
    8.5 Examples
    Chapter 9 Matrix Perturbation Theory for Interval Eigenproblem
    9.1 Introduction
    9.2 Elements of Interval Mathematics
    9.2.1 Interval Algorithm
    9.2.2 Interval Vector and Matrix
    9.2.3 Interval Extension
    9.3 Interval Eigenproblem
    9.4 The Deif’s Method for Interval Eigenvalue Analysis
    9.5 Generalized Deif’s Method
    9.6 Matrix Perturbation for Interval Eigenvalue Analysis Based on the Deif’s Method
    9.6.1 Application of Matrix Perturbation to Interval Eigenvalues
    9.6.2 Numerical Example
    9.7 Matrix Perturbation for Interval Eigenproblem
    9.7.1 Interval Perturbation Formulation
    9.7.2 Numerical Example
    References
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证