1 Introduction to Surface Texture Measurement Richard Leach 1.1 Surface Texture Measurement 1.2 Surface Profile and Areal Measurement 1.3 Areal Surface Texture Measurement 1.4 Surface Texture Standards and GPS 1.4.1 Profile Standards 1.4.2 Areal Specification Standards 1.5 Instrument Types in the ISO 25178 Series 1.5.1 The Stylus Instrument 1.5.2 Scanning Probe Microscopes 1.5.3 Scanning Electron Microscopes 1.5.4 Optical Instrument Types 1.6 Considerations When Choosing a Method Acknowledgements References 2 Some Common Terms and Definitions Richard Leach 2.1 Introduction 2.2 The Principal Aberrations 2.3 Objective Lenses 2.4 Magniflcation and Numerical Aperture 2.5 Spatial Resolution 2.6 Optical Spot Size 2.7 Field of View 2.8 Depth of Field and Depth of Focus 2.9 Interference Objectives Acknowledgements References 3 Limitations of Optical 3D Sensors Gerd Häusler,Svenja Ettl 3.1 Introduction:What Is This Chapter About? 3.2 The Canonical Sensor 3.3 Optically Rough and Smooth Surfaces 3.4 Type Ⅰ Sensors:Triangulation 3.5 Type Ⅱ and Type Ⅲ Sensors:Interferometry 3.6 Type Ⅳ Sensors:Deflectometry 3.7 Only Four Sensor Principles? 3.8 Conclusion and Open Questions References 4 Calibration of Optical Surface Topography Measuring Instruments Richard Leach,Claudiu Giusca 4.1 Introduction to Calibration and Traceability 4.2 Calibration of Surface Topography Measuring Instruments 4.3 Can an Optical Instrument Be Calibrated? 4.4 Types of Material Measure 4.5 Calibration of Instrument Scales 4.5.1 Noise 4.5.2 Residual Flatness 4.5.3 Amplification,Linearity and Squareness of the Scales 4.5.4 Resolution 4.6 Relationship between the Calibration,Adjustment and Measurement Uncertainty 4.7 Summary Acknowledgements References 5 Chromatic Confocal Microscopy Francois Blateyron 5.1 Basic Theory 5.1.1 Confocal Setting 5.1.2 Axial Chromatic Dispersion 5.1.3 Spectral Decoding 5.1.4 Height Detection 5.1.5 Metrological Characteristics 5.1.5.1 Spot Size 5.2 Instrumentation 5.2.1 Lateral Scanning Configurations 5.2.1.1 Profile Measurement 5.2.1.2 Areal Measurement 5.2.2 Optoelectronic Controller 5.2.3 Optical Head 5.2.4 Light Source 5.2.5 Chromatic Objective 5.2.6 Spectrometer 5.2.7 Optical Fibre Cord 5.3 Instrument Use and Good Practice 5.3.1 Calibration 5.3.1.1 Calibration of Dark Level 5.3.1.2 Linearisation of the Response Curve 5.3.1.3 Calibration of the Height Amplification Coefficient 5.3.1.4 Calibration of the Lateral Ampliflcation Coefficient 5.3.1.5 Calibration of the Hysteresis in Bi-directional Measurement 5.3.2 Preparation for Measurement 5.3.3 Pre-processing 5.4 Limitations of the Technique 5.4.1 Local Slopes 5.4.2 Scanning Speed 5.4.3 Light Intensity 5.4.4 Non-measured Points 5.4.5 Outliers 5.4.6 Interference 5.4.7 Ghost Foci 5.5 Extensions of the Basic Principles 5.5.1 Thickness Measurement 5.5.2 Line and Field Sensors 5.5.3 Absolute Reference 5.6 Case Studies Acknowledgements References 6 Point Autofocus Instruments Katsuhiro Miura,Atsuko Nose 6.1 Basic Theory 6.2 Instrumentation 6.3 Instrument Use and Good Practice 6.3.1 Comparison with Roughness Material Measures 6.3.2 Three-Dimensional Measurement of Grinding Wheel Surface Topography 6.4 Limitations of PAI 6.4.1 Lateral Resolution 6.4.2 Vertical Resolution 6.4.3 The Maximum Acceptable Local Surface Slope 6.5 Extensions of the Basic Principles 6.6 Case Studies 6.7 Conclusion References 7 Focus Variationl Instruments Franz Helmli 7.1 Introduction 7.2 Basic Theorg 7.2.1 How Does It Work? 7.2.2 Acquisition of Image Data 7.2.3 Measurement of 3D Information 7.2.4 Post-processing 7.2.5 Handling of Invalid Points 7.3 Difference to Other Techniques 7.3.1 Difference to Imaging Confocal Microscopy 7.3.2 Difference to Point Auto Focusing Techniques 7.4 Instrumentation 7.4.1 Optical System 7.4.2 CCD Sensor 7.4.3 Light Source 7.4.4 Microscope Obiective 7.4.5 Driving Unit 7.4.6 Practical Instrument Realisation 7.5 Instrument Use and Good Practice 7.6 Limitations of the Technology 7.6.1 Translucent Materials 7.6.2 Measurable Surfaces 7.7 Extensions of the Basic Principles 7.7.1 Repeatability Information 7.7.2 High Radiometric Data Accluisition 7.7.3 2D Alignment 7.7.4 3D Alignment 7.8 Case Studies 7.8.1 Surface Texture Measurement of Worn Metal Parts 7.8.2 Form Measurement of Complex Tap Parameters 7.9 Conclusion Acknowledgements References 8 Phase Shifting Interferometry Peter de Groot 8.1 Conceot and Overview 8.2 Principles of Surface Measurement Interferometry 8.3 Phase Shifting Method 8.4 Phase Unwrapping 8.5 Phase Shifting Error Analysis 8.6 Interferometer Design 8.7 Lateral Resolution 8.8 Focus 8.9 Light Sources 8.10 Calibration 8.11 Examples of PSI Measurement References 9 Coherence Scanning Interferometry Peter de Groot 9.1 Conceot and Overview 9.2 Terminology 9.3 Typical Configurations of CSI 9.4 Signal Formation 9.5 Signal Processing 9.6 Foundation Metrics and Height Calibration for CSI 9.7 Dissimilar Materials 9.8 Vibrational Sensitivity 9.9 Transparent Films 9.10 Examples 9.11 Conclusion References 10 Digital Holographic Microscopy Tristan Coolmb,Jonas Kühn 10.1 Introduction 10.2 Basic Theory 10.2.1 Acquisition 10.2.2 Reconstruction 10.3 Instrumentation 10.3.1 Light Source 10.3.2 Digital Camera 10.3.3 Microscope Obiective 10.3.4 Optical Path Retarder 10.4 Instrument Use and Good Practice 10.4.1 Digital Focusing 10.4.2 DHM Parameters 10.4.3 Automatic Working Distance in Reflection DHM 10.4.4 Sample Preoaration and Immersion Liquids 10.5 Limitations of DHM 10.5.1 Parasitic Interferences and Statistical Noise 10.5.2 Height Measurement Range 10.5.3 Sample Limitation 10.6 Extensions of the Basic DHM Principles 10.6.1 Multi-wavelength DHM 10.6.1.1 Extended Measurement Range 10.6.1.2 Mapping 10.6.2 Stroboscopic Measurement 10.6.3 DHM Reflectometry 10.6.4 Infinite Focus 10.6.5 Applications of DHM 10.6.5.1 Topography and Defect Detection 10.6.5.2 Roughness 10.6.5.3 Micro-optics Characterization 10.6.5.4 MEMS and MOEMS 10.6.5.5 Semi-transparent Micro-structures 10.7 Conclusions References 11 Imaging Confocal Microscopy Roger Artigas 11.1 Basic Theory 11.1.1 Introduction to Imaging Confocal Microscopes 11.1.2 Working Principle of an Imaging Confocal Microscope 11.1.3 Metrological Algorithm 11.1.4 Image Formation of a Confocal Microscope 11.1.4.1 General Description of a Scanning Microscope 11.1.4.2 Point Spread Function for the Limiting Case of an Infinitesimally Small Pinhole 11.1.4.3 Pinhole Size Effect 11.2 Instrumentation 11.2.1 Types of Confocal Microscopes 11.2.1.1 Laser Scanning Confocal Microscope Configuration 11.2.1.2 Disc Scanning Confocal Microscope Configuration 11.2.1.3 Programmable Array Scanning Confocal Microscope Configuration 11.2.2 Objectives for Confocal Microscopy 11.2.3 Vertical Scanning 11.2.3.1 Motorised Stares with Optical Linear Encoders 11.2.3.2 Piezoelectric Stages 11.2.3.3 Comparison between Motorised and Piezoelectric Scanning Stages 11.3 Instument Use and Good Practice 11.3.1 LocatiOn of an Imaging Confocal Microscope 11.3.2 Setting Up the Sample 11.3.3 Setting the Right Scanning Parameters 11.3.4 Simultaneous Detection of Confocal and Bright Field Images 11.3.5 Sampling 11.3.6 Low Magniflcation against Stitching 11.4 Limitatioas of Imaging Confocal Microscopy 11.4.1 Maximum Detectable Slope on Smooth Surfaces 11.4.2 Noise and Resolution in Imaging Confocal Microscopes 11.4.3 Errors in Imaring Confocal Microscopes 11.4.3.1 Objective Flatness Error 11.4.3.2 Calibration of the Flatness Error 11.4.3.3 Measurements on Thin Transparent Materials 11.4.4 Lateral Resolution 11.5 Measurement of Thin and Thick Film with Imaging Confocal Microscopy 11.5.1 Introduction 11.5.2 Thick Films 11.5.3 Thin Films 11.6 Case Study:Roughness Prediction on Steel Plates References 12 Light Scattering Methods Theodore V.Vorburger,Richard Silver,Rainer Brodmann,Boris Brodmann,Jörg Seewig 12.1 Introduction 12.2 Basic Theory 12.3 Instrumentation and Case Studies 12.3.1 Early Developments 12.3.2 Recent Developments in Instrumentation for Mechanical Engineering Manufacture 12.3.3 Recent Developments in Instrumentation for Semiconductor Manufacture(Optical Critical Dimension) 12.4 Instrument Use and Good Practice 12.4.1 SEMI MF 1048-1109(2009)Test Method for Measuring the Effective Surface Roughness of Optical Components by Total Integrated Scattering 12.4.2 SEMI ME 1392-1109(2009)Guide for Angle-Resolved Optical Scatter Measurements on Specular or Diffuse Surfaces 12.4.3 ISO10110-8:2010 Optics and Photonics-Preparation of Drawings for Optical Elements and Systems-Part 8:Surface Texture 12.4.4 Standards for Gloss Measurement 12.4.5 VDA Guideline 2009,Geometrische Produktspezifikation Oberflächenbeschaffenheit Winkelaufgelöste Streulichtmesstech-nik Definition,Kenngröβen und Anwendung(Light Scattering Measurement Technique) 12.5 Limitations of the Technique 12.6 Extensions of the Basic Principles Acknowledgements References Index