0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 能源与动力工程 > 锂离子电池失效机理:物理力学理论分析

相同语种的商品

浏览历史

锂离子电池失效机理:物理力学理论分析


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
锂离子电池失效机理:物理力学理论分析
  • 书号:9787030747860
    作者:马增胜,蒋文娟,孙立忠
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:404
    字数:515000
    语种:zh-Hans
  • 出版社:科学出版社
    出版时间:2023-02-01
  • 所属分类:
  • 定价: ¥179.00元
    售价: ¥141.41元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书分为三个部分。第一部分为基础理论(1~4章)。主要介绍锂离子电池及材料力学的基础知识,包括锂离子电池的结构、工作原理和失效行为,以及弹塑性理论基础、破坏力学基础和基于小变形及大变形的力?化耦合基本理论。第二部分为失效机理(5~7章)。主要介绍高容量电极材料的力学失效机理,包括应变梯度塑性理论下电极材料的损伤和断裂机理,以及辐射环境下高容量电极材料的失效机理等内容。第三部分为锂离子电池热管理(8~12章)。主要介绍柱式和方形锂离子电池器件在力?热?电?化多场耦合条件下的物理场,包括温度场、应力场、应变场等方面,特别是对锂离子电池器件在极寒和高温条件下的力学行为进行了系统阐述,并针对锂离子电池单体电池和电堆散热性能进行结构优化设计。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 目录
    第1章 绪论 1
    1.1 锂离子电池工作原理及结构 1
    1.1.1 锂离子电池结构与原理 1
    1.1.2 电解液 2
    1.1.3 隔膜 2
    1.1.4 锂离子电池正极材料 2
    1.1.5 锂离子电池负极材料 3
    1.1.6 锂离子电池钢壳材料 5
    1.2 锂离子电池关键材料与器件的失效行为 6
    1.2.1 锂离子电池器件的宏观性能退化 6
    1.2.2 锂离子电池关键材料的失效行为 10
    1.2.3 锂离子电池关键材料力学失效与器件失效的关联 13
    1.3 锂离子电池关键材料与器件失效给固体力学提出的巨大挑战 15
    参考文献 17
    第2章 弹塑性力学基础 23
    2.1 预备知识 23
    2.1.1 弹塑性力学的研究对象和任务 23
    2.1.2 弹塑性力学的基本假设 24
    2.1.3 弹性与塑性 24
    2.1.4 张量概念和求和约定 26
    2.2 应力 29
    2.2.1 外力和应力 29
    2.2.2 平衡方程和应力边界条件 33
    2.2.3 主应力和主方向 38
    2.2.4 球形应力张量和应力偏量张量 39
    2.3 应变 40
    2.3.1 变形和应变 40
    2.3.2 主应变和主方向 46
    2.4 应力应变关系 48
    2.4.1 各向同性弹性体的胡克定律 48
    2.4.2 弹性应变能函数 52
    2.4.3 屈服函数和屈服曲面 55
    2.4.4 两个常用屈服准则 59
    2.4.5 增量理论 63
    2.4.6 全量理论 66
    参考文献 67
    第3章 宏微观破坏力学基础 68
    3.1 宏观破坏力学分析 68
    3.1.1 裂纹的分类及裂纹尖端附近的弹性应力场 70
    3.1.2 应力强度因子 74
    3.1.3 小范围屈服下的塑性修正 75
    3.1.4 断裂判据和断裂韧性 82
    3.1.5 弹塑性断裂力学 88
    3.2 微观破坏力学分析 91
    3.2.1 损伤的基本概念及损伤的分类 92
    3.2.2 一维蠕变损伤 94
    3.2.3 各向同性损伤 97
    3.2.4 各向异性损伤 100
    3.2.5 损伤与断裂的交互作用 103
    3.2.6 纳观断裂力学 104
    参考文献 106
    第4章 锂离子电池电极材料力化耦合基本理论 108
    4.1 基于小变形弹性的力化耦合理论 108
    4.1.1 扩散方程 108
    4.1.2 电极材料的弹性应力应变关系 109
    4.1.3 耦合机理 109
    4.1.4 球(壳)的应力演化 109
    4.2 基于小变形弹塑性的力化耦合理论 111
    4.2.1 化学反应和流动的非平衡过程 111
    4.2.2 非弹性变形 113
    4.2.3 泰勒展开 113
    4.2.4 线性动力学模型 114
    4.2.5 不考虑屈服强度的非线性率相关动力学模型 116
    4.2.6 考虑屈服强度的率无关动力学模型 118
    4.3 基于大变形弹塑性的力化耦合理论 121
    4.3.1 锂化和变形耦合的非平衡热力学 121
    4.3.2 球形电极颗粒的理论分析 124
    4.4 基于应力化学势的大变形弹塑性力化耦合理论 127
    4.4.1 有限变形运动学和动力学 127
    4.4.2 变形分解 128
    4.4.3 内能与化学势 128
    4.4.4 球形硅颗粒应用示例 130
    参考文献 133
    第5章 锂离子电池高比容量电极材料的失效机理图 135
    5.1 不同结构电极材料的失效预测 135
    5.1.1 薄膜电极材料失效破坏理论模型 135
    5.1.2 实心活性材料失效破坏理论模型 137
    5.1.3 空心活性材料失效破坏理论模型 140
    5.1.4 临界尺寸的实验验证 143
    5.2 不同结构电极材料的应力场 144
    5.2.1 薄膜结构电极材料的锂化变形及应力演化 144
    5.2.2 球结构电极材料的锂化变形及应力演化 145
    5.3 锂离子电池电极材料的失效机理图 151
    5.3.1 薄膜电极材料的锂化破坏 151
    5.3.2 空心核壳结构电极材料的锂化破坏 156
    5.3.3 实验验证 160
    参考文献 162
    第6章 基于应变梯度塑性理论的锂离子电池电极材料失效机理研究 164
    6.1 应变梯度塑性理论 164
    6.1.1 锂化相变位错现象 164
    6.1.2 微米量级下的尺度效应 166
    6.1.3 应变梯度塑性理论的发展 167
    6.2 高容量电极材料的结构模型及理论模型 168
    6.2.1 高容量电极材料的结构模型 168
    6.2.2 高容量电极材料的锂化扩散控制方程 169
    6.2.3 考虑扩散和应变梯度塑性理论的弹塑性变形 170
    6.2.4 高容量电极材料锂化变形的有限元分析 174
    6.3 高容量电极材料的锂化变形及应力分析 176
    6.3.1 von Mises应力演变及塑性屈服分析 177
    6.3.2 垂直应力演变及关键位置的应力分析 179
    6.3.3 水平应力演变及关键位置的应力分析 181
    6.4 高容量电极材料的锂化损伤及破坏分析 184
    6.4.1 高容量电极材料损伤机理 184
    6.4.2 锂化界面损伤及剥离分析 186
    6.4.3 锂化上表面损伤及断裂分析 191
    参考文献 195
    第7章 辐射环境下锂离子电池电极材料的失效预测 200
    7.1 高容量电极材料两相锂化解析模型 200
    7.1.1 高容量电极颗粒的两相锂化浓度分布函数 200
    7.1.2 高容量电极颗粒的应力解析模型 201
    7.1.3 高容量电极颗粒两相锂化的临界破坏状态 206
    7.1.4 物理场分析 206
    7.2 辐射电化学耦合塑性模型 210
    7.2.1 辐射条件下离子扩散动力学理论 210
    7.2.2 辐射效应的影响规律 215
    7.3 基于辐射的两相锂化微观机理 221
    7.3.1 基于辐射电化学耦合的屈服函数 221
    7.3.2 基于辐射的两相锂化弹塑性模型 223
    7.3.3 结果分析 229
    7.4 基于辐射电化学耦合的模拟与实验表征 235
    7.4.1 几何模型 235
    7.4.2 有限元模型 237
    7.4.3 有限元计算结果分析 237
    7.4.4 中子辐照对锂离子电池电化学性能的影响 241
    参考文献 244
    第8章 锂离子电池热力化多场耦合模型 250
    8.1  锂离子电池电化学模型 250
    8.1.1 电荷守恒方程 252
    8.1.2 质量守恒方程 253
    8.1.3 电极动力学 253
    8.2 锂离子电池热模型 254
    8.2.1 二维热模型 255
    8.2.2 三维热模型 255
    8.3 锂离子电池应力模型 256
    8.4 锂离子电池电化学热耦合模型 257
    8.5 锂离子电池电化学力耦合模型 258
    8.6 锂离子电池热力化耦合模型 259
    参考文献 260
    第9章 锂离子电池电极材料多场耦合条件下的物理场 264
    9.1 锂离子电池化热耦合条件下的温度场 264
    9.1.1  对流换热系数对电极材料温度场的影响 265
    9.1.2 表面热辐射率对电极材料温度场的影响 267
    9.2 锂离子电池电极材料化力耦合条件下的多场分析 268
    9.2.1 空心核壳结构负极材料化力耦合条件下的浓度场和应力场分析 268
    9.2.2 薄膜结构负极材料化力耦合条件下的浓度场和应力场分析 272
    9.3 锂离子电池电极材料热力化耦合条件下的浓度场和应力场 275
    9.3.1 空心核壳结构正极材料热力化耦合条件下的浓度场和应力场分析 276
    9.3.2 两球形正极颗粒相接触下热力化耦合作用的浓度场和应力场分析 283
    9.3.3 二维螺旋卷绕锂离子电池热力化耦合条件下的物理场 285
    参考文献 296
    第10章 锂离子电池高低温条件下的电化学性能 299
    10.1 锂离子电池不同温度下放电行为存在的问题 300
    10.2 常温下LiMn2O4锂离子电池放电过程的电化学热研究 301
    10.2.1 模型验证 303
    10.2.2 锂离子电池放电过程中的电化学研究 303
    10.2.3 锂离子电池放电过程中的热效应 307
    10.3 低温下LiMn2O4锂离子电池放电过程的电化学热研究 311
    10.3.1 模型的有效性分析 311
    10.3.2 低温下锂离子电池放电过程的电化学研究 312
    10.3.3 低温下锂离子电池放电过程的热研究 314
    10.3.4 低温下锂离子电池的优化设计 318
    10.4 高温下LiMn2O4锂离子电池放电过程的电化学热研究 324
    10.4.1 高温下LiMn2O4锂离子电池的电化学性能 324
    10.4.2 高温下LiMn2O4锂离子电池的热行为 325
    10.4.3 高温下LiMn2O4锂离子电池的热力学参数 325
    参考文献 328
    第11章 相变材料在锂离子电池热管理中的应用 332
    11.1 电池热管理系统概述 332
    11.2 相变材料(PCM)在电池热管理系统中的应用 334
    11.3 相变材料对单体电池温度分布的影响 337
    11.3.1 基于二维热模型的单体电池热管理系统 337
    11.3.2 基于三维热模型的单体电池热管理系统 342
    11.4 相变材料对锂离子电池组温度分布的影响 352
    11.4.1 相变材料对电池组温度的控制 352
    11.4.2 相变材料厚度对电池组温度的影响 353
    11.4.3 不同因素对电池组停止充放电后散热效果的影响 355
    11.4.4 基于相变材料的耦合热管理系统 358
    参考文献 360
    第12章 锂离子电池热管理系统与结构设计 364
    12.1 基于风冷散热的电池组热管理 365
    12.1.1 二维方形电池组风冷系统散热模型 365
    12.1.2 二维风冷模型散热效果 367
    12.1.3 二维风冷模型结构优化 370
    12.2 基于液冷散热的电池组热管理 373
    12.2.1 单体液冷电池的建模与分析 374
    12.2.2 液冷管电池组模型 379
    12.3 基于相变材料散热的电池组结构设计 386
    12.3.1 电池组热管理模型 386
    12.3.2 不同结构散热性能分析 388
    12.4 基于液冷相变耦合散热的电池组结构设计 391
    12.4.1 液冷相变材料耦合散热的电池组结构设计 391
    12.4.2 复合板结构的改进 393
    参考文献 402
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证