0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 信息技术 > 办公与应用 > 卡尔曼滤波与信息融合(英文版)

浏览历史

卡尔曼滤波与信息融合(英文版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
卡尔曼滤波与信息融合(英文版)
  • 书号:9787030635471
    作者:马宏宾
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:291
    字数:
    语种:zh-Hant
  • 出版社:科学出版社
    出版时间:1900-01-01
  • 所属分类:
  • 定价: ¥156.00元
    售价: ¥123.24元
  • 图书介质:
    按需印刷

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Part I Kalman Filtering: Preliminaries
    1 Introduction to Kalman Filtering 3
    1.1 What Is Filtering? 3
    1.2 Historical Remarks 5
    1.3 Wiener Filter 7
    1.4 Kalman Filter 7
    1.5 Conclusion 9
    References 9
    2 Challenges in Kalman Filtering11
    2.1 Standard Kalman Filter 11
    2.2 Requirements of Standard Kalman Filtering 14
    2.3 Effects of System Uncertainties 15
    2.4 Effects of Multiple Sensors 16
    2.5 Effects of System Couplings 16
    2.6 Conclusion 17
    References 17
    Part II Kalman Filtering for Uncertain Systems
    3 Kalman Filter with Recursive Process Noise Covariance Estimation 21
    3.1 Introduction 21
    3.2 Problem Formulation 23
    3.2.1 Standard Kalman Filter 23
    3.2.2 Problem To Be Resolved 23
    3.3 Basic Idea: Estimating Covariance Matrix 26
    3.4 Kalman Filter Based on Algorithm RecursiveCovarianceEstimation 31
    3.5 Stability Analysis 33
    3.6 Simulations 41
    3.6.1 One-Dimensional Simulation 41
    3.6.2 Multidimensional Simulation 42
    3.6.3 Integrated Navigations Simulation 43
    3.7 Conclusion 46
    References 48
    4 Kalman Filter with Recursive Covariance Estimation Revisited with Technical Conditions Reduced 51
    4.1 Introduction 51
    4.2 Problem Formulation 53
    4.3 Kalman Filter with Recursive Covariance Estimation 56
    4.3.1 Basic Method: Covariance Matrix Estimation 56
    4.3.2 KF-RCE Algorithm for LTI Systems 58
    4.4 Stability Analysis 60
    4.5 Simulation Experiments 65
    4.6 Conclusion 68
    References 68
    5 Modified Kalman Filter with Recursive Covariance Estimation for Gyroscope Denoising 71
    5.1 Introduction 71
    5.2 Problem Formulation 73
    5.2.1 Kalman Filter 73
    5.2.2 Problem to Be Resolved 74
    5.3 Modified Kalman Filter with Recursive Covariance Matrix 76
    5.3.1 Basic Idea: Estimating Covariance Matrix 76
    5.3.2 Modified Kalman Filter with Recursive Covariance Matrix 77
    5.3.3 Stability Analysis 79
    5.3.4 Simulation Study 86
    5.4 Experimental Tests 87
    5.5 Conclusion 93
    References 93
    6 Real-Time State Estimator Without Noise Covariance Matrices Knowledge 95
    6.1 Introduction 95
    6.2 Problem Formulation 97
    6.3 The Fast Minimum Norm Filtering Algorithm 99
    6.3.1 Time Update 100
    6.3.2 Measurement Update 100
    6.4 Numerical Examples 106
    6.4.1 Example I: Measurement Feedback Simulation 107
    6.4.2 Example II: Data Fusion Simulation 107
    6.4.3 Example III: Integrated Navigation Simulation 115
    6.5 Conclusion 115
    References 118
    7 A Framework of Finite-Model Kalman Filter with Case Study: MVDP-FMKF Algorithm 119
    7.1 Introduction 119
    7.2 Kalman Filter 121
    7.3 Framework of Finite-Model Kalman Filter 122
    7.4 MVDP Finite-Model Kalman Filter Algorithm 125
    7.4.1 Derivation of di 126
    7.4.2 Two-Model MVDP-FMKF Algorithm 131
    7.4.3 General MVDP-FMKF Algorithm 134
    7.5 Simulation of the MVDP-FMKF Algorithm 136
    7.5.1 One-Dimensional Simulation 137
    7.5.2 Multidimensional Simulation 142
    7.6 Experimental Test 143
    7.7 Conclusion 144
    References 145
    8 Kalman Filters for Continuous Parametric Uncertain Systems 147
    8.1 Introduction 147
    8.2 Problem Formulation 149
    8.3 The Estimation Algorithm 150
    8.3.1 The Kalman Filtering-Based Parameter Estimation 150
    8.3.2 The Kalman Filtering-Based State Estimation 153
    8.4 Convergence Analysis 156
    8.5 Numerical Example 158
    8.6 Conclusions 160
    References 160
    Part III Kalman Filtering for Multi-sensor Systems
    9 Optimal Centralized, Recursive, and Distributed Fusion for Stochastic Systems with Coupled Noises 165
    9.1 Introduction 165
    9.2 Problem Formulation 166
    9.3 Optimal Fusion Algorithms 167
    9.4 Performance Analysis and Computer Simulation 182
    9.5 Summary 196
    References 197
    10 Optimal Estimation for Multirate Systems with Unreliable Measurements and Correlated Noise 199
    10.1 Problem Formulations 201
    10.2 Optimal Distributed Fusion Algorithm 203
    10.2.1 Local State Estimation with Normal Measurements 203
    10.2.2 Local State Estimation with Unreliable Measurements 206
    10.2.3 Optimal Distributed Fusion Estimation with Unreliable Measurements 208
    10.3 Numerical Example 214
    10.4 Summary 220
    References 220
    11 CKF-Based State Estimation of Nonlinear System by Fusion of Multirate Multisensor Unreliable Measurements 223
    11.1 Introduction 223
    11.2 Problem Formulation 225
    11.3 Multirate Multisensor Data Fusion Algorithm 225
    11.4 Numerical Simulation 230
    11.4.1 Simple Example on Tracking of a Ship 230
    11.4.2 Target Tracking on Aircraft 234
    11.5 Summary 236
    References 237
    Part IV Kalman Filtering for Multi-agent Systems
    12 Decentralized Adaptive Filtering for Multi-agent Systems with Uncertain Couplings 241
    12.1 Introduction 241
    12.2 Problem Statement 243
    12.2.1 Model 1: Linear Model with Output Coupling 243
    12.2.2 Model 2: Linear Model with State Coupling 244
    12.2.3 Model 3: Nonlinear Model with Output Coupling 244
    12.2.4 Model 4: Nonlinear Model with State Coupling 244
    12.3 Decentralized Adaptive Filter 245
    12.3.1 Model 1 246
    12.3.2 Model 2 248
    12.3.3 Model 3 249
    12.3.4 Model 4 251
    12.4 Decentralized Controller Design 252
    12.5 Remarks on Stability Analysis 253
    12.5.1 Linear Situations 253
    12.5.2 Nonlinear Situations 255
    12.6 Simulation Studies 257
    12.6.1 Model 1 257
    12.6.2 Model 2 261
    12.6.3 Model 3 264
    12.6.4 Model 4 267
    12.7 Conclusion 269
    References 270
    13 Comparison of Several Filtering Methods for Linear Multi-agent Systems with Local Unknown Parametric Couplings 273
    13.1 Introduction 273
    13.2 Problem Formulation 275
    13.3 Algorithms 276
    13.3.1 Method 1—DF-AKF (Decentralized Filtering with Augmented Kalman Filter) 277
    13.3.2 Method 2—DF-TSKF (Decentralized Filtering with Two-Stage Kalman Filter) 279
    13.3.3 Method 3—CF-AKF (Centralized Filtering with Augmented Kalman Filter) 281
    13.3.4 Method 4—CF-AEKF (Centralized Filtering with Augmented Extended Kalman Filter) 282
    13.3.5 Method 5—CF-AUKF (Centralized Filtering with Augmented Unscented Kalman Filter) 284
    13.4 Simulation Study 286
    13.5 Conclusion 289
    References 290
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证