目录 序 第1章 岩石动态试验装置与试验技术 1 1.1 岩石准动态试验装置 2 1.1.1 快速加载试验机原理 2 1.1.2 国内外研制的几种快速加载试验机 4 1.1.3 中应变率段(10s-1)的岩石试验方法 9 1.2 岩石动态压缩试验装置与试验技术 18 1.2.1 霍普金森实验的沿革与发展 18 1.2.2 霍普金森压杆装置试验原理 19 1.2.3 岩样应力均匀化的简化分析 24 1.2.4 电脑化数据采集处理系统原理与方法 28 1.3 自行研制的岩石冲击加载试验系统 31 1.3.1 压气驱动的水平冲击试验机 31 1.3.2 氯气驱动的大直径冲击试验机 33 1.3.3 动态试验测试系统 35 1.3.4 信号与数据处理软件 37 1.4 霍普金森压杆的变形装置 39 1.4.1 三轴霍普金森压杆 39 1.4.2 霍普金森拉杆 43 1.4.3 霍普金森扭杆 45 1.4.4 其他变形装置 47 1.5 岩石类材料动态拉伸试验方法 49 1.5.1 动态直接拉伸试验 49 1.5.2 动态间接拉伸试验 50 1.5.3 动态层裂试验 53 1.6 岩石超动态试验装置简述 56 1.6.1 几种不同类型的试验装置 56 1.6.2 气体炮的工作原理 57 1.6.3 平板撞击试验试件布置 60 参考文献 62 第2章 岩石冲击试验合理加载波形与试验方法 67 2.1 冲头撞击杆件产生的应力波形 67 2.1.1 简单结构冲头产生的应力波形 67 2.1.2 复杂冲头撞击杆件的电算方法 72 2.2 矩形波波形弥散与岩石动态应力应变曲线 80 2.2.1 不同形状应力披在杆中传播的弥散效应 80 2.2.2 矩形被加载的应力-应变曲线 86 2.2.3 不同加载波形下应力-应变-应变率关系 89 2.3 岩石类材料动态试验的合理加载形式 91 2.3.1 锥形冲头加载 91 2.3.2 纺锤形冲头加载 94 2.3.3 试样的恒应变率变形条件与试验验证 96 2.4 岩石恒应变率动态本构关系获得的新方法 99 2.4.1 SHPB试验数据的三维散点处理方法 99 2.4.2 试验数据的三维散点结果的解释 103 2.5 岩石动态测试的建议方法 104 2.5.1 试验系统与参数 105 2.5.2 岩石动态抗压强度测试 105 2.5.3 动态巴西试验测试岩石抗拉强度 107 2.5.4 1 型动态断裂韧度测试 108 参考文献 110 第3章 合理加载波形反演设计与试验系统数值模拟 113 3.1 已知波形的冲头形状反演理论 113 3.1.1 等截面圆柱冲头撞击弹性长杆产生的应力波 113 3.1.2 阶梯状变截面冲头撞击弹性长杆时所产生的应力波 115 3.1.3 连续变截面冲头撞击时所产生的应力波 116 3.1.4 基于一维应力被理论的冲头形状反演设计 118 3.2 半正弦波对应的冲头结构反演 119 3.2.1 不同杆件尺寸的半正弦波冲头反演设计 120 3.2.2 半正弦波加载下的岩石动态试验 122 3.3 纺锤形冲头SHPB 系统的应力波特性 123 3.3.1 不同接触情况下杆中应力不均匀性分析 123 3.3.2 纺锤形冲头偏心撞击下SHPB 杆的动态响应 127 3.4 纺锤形冲头岩石SHPB 试验的校验 131 3.4.1 纺锤形冲头冲击速率和人射应力的关系 131 3.4.2 纺锤形冲头SHPB 系统校正步骤 133 3.5 半正弦波加载SHPB 系统数值模拟 134 3.5.1 纺锤形冲头SHPB 数值模拟系统 135 3.5.2 颗粒流SHPB 动态数值模拟 139 3.5.3 应变率效应的影响 147 参考文献 152 第4章 动静组合加载与温压耦合试验技术 155 4.1 岩石动静组合加载试验技术 155 4.1.1 静载与微扰组合加载试验技术 156 4.1.2 基于SHPB 的动静组合加载试验系统 158 4.2 温压耦合岩石动载试验装置与技术 162 4.2.1 温压耦合作用下岩石动态试验装置 163 4.2.2 试验方法与操作过程 164 4.3 动静载荷耦合破碎岩石试验系统 165 4.3.1 功、静载荷耦合破碎岩石试验原理 165 4.3.2 动、静载荷耦合破碎岩石试验装置 166 4.3.3 试验装置可行性验证 169 4.4 岩石真三轴电液伺服诱变扰动试验系统 170 4.4.1 试验系统概述 170 4.4.2 试验技术参数 174 参考文献 175 第5章 冲击载荷作用下的岩石力学特性 176 5.1 岩石的动态强度 176 5.1.1 岩石的应力应变关系 177 5.1.2 岩石动态强度与应变率的关系 177 5.1.3 加载波形和延续时间的影响 185 5.1.4 岩石动态强度的尺寸效应 186 5.2 岩石动态断裂破坏准则 192 5.2.1 Grady-Kipp 模型 192 5.2.2 Steverding-Lehnigk 动态断裂准则 197 5.3 岩石的动态损伤累积 200 5.3.1 应力被作用下的岩石疲劳损伤 201 5.3.2 循环冲击下岩石的损伤规律 203 5.3.3 应力波在岩体中的衰减 205 5.4 高温下的岩石动力学特性 208 5.4.1 高祖前后岩石密度及波速特性 208 5.4.2 高温后岩石动态拉压力学特性 209 5.4.3 高温后岩石动态断裂力学特性 215 参考文献 217 第6章 动静组合加载下的岩石破坏特征 221 6.1 静载与低频扰动作用下的岩石力学特征 221 6.1.1 一维动静组合加载 221 6.1.2 二维动静组合加载 224 6.1.3 动静组合加载中动载荷频率与强度的影响 227 6.2 静压与强动载组合作用下的岩石力学特性 231 6.2.1 相同动载不同静载下岩石的力学特性 231 6.2.2 相同静载不同动载下岩石的力学特性 234 6.2.3 围压对组合加载岩石力学特性的影响 235 6.3 动静组合加载下的岩石本构模型 239 6.3.1 基本假设 239 6.3.2 一维动静组合加载下岩石的本构模型 240 6.3.3 三维动静组合加载下岩石的本构模型 241 6.3.4 岩石动静组合加载本构关系的试验验证 245 6.4 温压耦合作用下的岩石动态力学特性 250 6.4.1 不同静压下岩石动态力学性质随温度变化规律 250 6.4.2 不同温度岩石动态力学性质随静压变化规律 253 6.4.3 温压耦合作用下岩石动态本构模型与数值验证 255 参考文献 257 第7章 岩石在应力波作用下的能量耗散 258 7.1 岩石冲击破碎时的能量分布 258 7.2 岩石在不同加载波下的能量耗散 260 7.2.1 矩形波加载 261 7.2.2 指数衰减被加载 264 7.2.3 钟形波加载 265 7.2.4 以弹性波形式无用耗散的能量值 267 7.2.5 延续时间和被形的影响 268 7.3 应力波作用下岩石的吸能效果 269 7.3.1 岩石吸能分析 269 7.3.2 人射能、反射能、透射能与岩石吸能 271 7.3.3 不同延续时同下的岩石吸能试验结果 274 7.4 不同加载波形下岩石破碎的耗能规律 276 7.4.1 岩石耗能与入射能的关系 276 7.4.2 不同加载条件下的破碎程度 278 7.4.3 实现合理破岩的应力波体系 280 7.5 动静组合载荷下岩石破坏的耗能规律 282 7.5.1 动静组合载府下岩石能量计算与释能规律 282 7.5.2 三维组合加卸载下的岩石能量吸收规律 285 7.5.3 围压卸载对岩石吸收能量的影响 286 参考文献 287 第8章 动静载荷耦合作用下岩石破碎特征 290 8.1 动静载荷耦合作用下破岩理论分析 290 8.1.1 动静载荷耦合破岩特性曲线分析 290 8.1.2 动、静载荷耦合作用的力学分析 292 8.1.3 动、静载荷破岩的损伤断裂分析 293 8.2 动静载荷耦合作用下岩石破碎数值分析 299 8.2.1 静载荷作用下岩石破碎的数值分析 300 8.2.2 冲击载荷作用下岩石破碎的数值分析 301 8.2.3 动静组合载荷作用下岩石破碎的数值分析 301 8.3 动静载荷耦合作用下的破岩试验 303 8.3.1 静压与冲击耦合下的试验 304 8.3.2 静压与冲击耦合下的切削试验 307 8.3.3 水射流与静压冲击联合作用破岩试验 311 参考文献 313 第9章 应力波在不同边界结构面的传播 315 9.1 一维纵波在杆性质突变处的反射与透射 315 9.2 完全黏结条件下纵横波的折反射关系 317 9.2.1 波在自由边界上的反射 317 9.2.2 波在两种介质分界面上的反射和折射 322 9.3 可滑移条件下的折反射关系与岩体动力滑移准则 325 9.3.1 可滑移条件下的折反射关系 325 9.3.2 结构面上的能流分布与岩体动力滑移准则 331 9.3.3 爆破近区结构面的整体界面效应 334 9.4 应力波在闭合节理处的传播 336 9.4.1 纵波在线性法向变形节理处的传播 336 9.4.2 垂直纵波在非线性法向变形节理处的传播 341 9.4.3 初始刚度和频率对透反射系数的影响 342 9.5 应力波在张开节理处的传播 346 9.5.1 应力披在张开节理处传播的解析模型 346 9.5.2 不同应力波在张开节理处的能量传递规律 351 9.6 应力波在层状岩体中的传播 357 9.6.1 等效波阻法 357 9.6.2 应力波通过夹层后的透射应力波形 360 9.6.3 应力波遇夹层后的能量传递效果 365 9.7 爆轰波作用和岩石与炸药的合理耦合准则 366 9.7.1 传统的匹配观点 367 9.7.2 药卷爆轰与岩体的相互作用模型 368 9.7.3 岩石与炸药的合理耦合准则~ 370 9.7.4 常规炸药与不同岩体的合理匹配 373 参考文献 376 第10章 应力波在含空区岩体中的传播 378 10.1 爆炸在岩体中产生的应变波 378 10.1.1 线性炸药爆炸的波形合成 378 10.1.2 测点位置与方向对波形的影响 381 10.1.3 爆炸成坑的半径范围 388 10.2 质点震动速率经验公式与评估标准 389 10.2.1 不同岩石条件下的评估标准 389 10.2.2 质点震动峰值速率经验公式 391 10.2.3 含有采空区的露天台阶爆破实例 393 10.3 应力波在含空区岩体中传播的数值模拟 398 10.3.1 几何模型的建立 398 10.3.2 爆破荷载输入方法 400 10.3.3 数值计算模型的建立 402 10.3.4 数值计算模型验证 404 10.4 采空区动力稳定性分析 405 10.4.1 岩体表面应力波传播 405 10.4.2 台阶爆破下的采空区稳定性分析 407 10.4.3 最小安全距离 410 参考文献 412 第11章 应力波在含石英类压电岩体中的传播 414 11.1 应力波与电磁波耦合的基本模型 414 11.1.1 力电耦合波动方程 414 11.1.2 应力波与电磁波的耦合理论 415 11.2 节理对岩体电磁辐射的影响 421 11.2.1 线性节理对电磁辐射的影响 421 11.2.2 非线性节理对电磁辐射的影响 423 11.2.3 节理对电磁辐射影响的计算与讨论 424 11.3 岩石电磁辐射与岩石属性参数的关系 428 11.3.1 岩石破裂裂纹宽度 428 11.3.2 电磁辐射频率与岩石参数的关系 430 11.3.3 电磁辐射幅值与岩石参数的关系 431 11.4 应力波传输效应 434 11.4.1 耦合电磁波的频率和强度 434 11.4.2 耦合电磁波的表面效应 435 11.4.3 临强地震与岩石破裂时电磁异常现象的综合 435 参考文献 437 第12章 菌应力岩体的扰动破裂特征与有效利用 440 12.1 高应力硬岩的板裂破坏 440 12.1.1 高应力硬岩板裂破坏的表现形式 440 12.1.2 硬岩单轴压缩试验下的板裂破坏 442 12.1.3 硬岩真三轴卸载试验下的板裂破坏 450 12.2 冲击载荷作用下的岩体层裂破坏 456 12.2.1 岩体层裂破坏的表现形式和发生条件 456 12.2.2 一维冲击下的硬岩层裂破坏 458 12.2.3 层裂破坏过程的损伤演化关系 460 12.3 动力扰动下高应力矿柱的破坏特征 462 12.3.1 深部矿柱动力扰动的力学模型 462 12.3.2 深部矿柱动力扰动的三维数值分析 465 12.3.3 深部矿柱应变能随扰动峰值的变化特征 469 12.4 高应力岩体分区破裂特征与动力学解释 470 12.4.1 高应力岩体分区破裂的研究现状 471 12.4.2 高应力岩体强卸荷的非连续破坏特征 475 12.4.3 高应力岩体加载的非连续破坏特征 482 12.5 高应力岩体诱导致裂与非爆连续开采 487 12.5.1 非爆连续开采理念与应用进展 487 12.5.2 岩体卸荷诱导致裂理论与应用 488 12.5.3 诱导致裂非爆连续开采可行性初探 491 参考文献 496 第13章 深部硬岩岩爆的动力学解释与工程防护 499 13.1 岩爆产生条件与发生判据 499 13.1.1 国内外岩爆研究述评 499 13.1.2 岩爆诱因的静力学条件与判据 501 13.1.3 硬岩深部开采动力扰动与诱发岩爆 505 13.2 弹性储能释放的岩爆发生判据 508 13.2.1 一维动静组合加载试验的岩石能量分析 508 13.2.2 基于扰动载荷下动静能量指标的岩爆发生判据 513 13.2.3 高应力岩体动力扰动下岩爆发生的试验室重现 514 13.3 有岩爆倾向性高应力岩体的支护 518 13.3.1 基于动力学的岩体支护系统 518 13.3.2 基于自稳时变结构的岩爆动力源分析 521 13.3.3 动静组合支护关键技术 527 13.3.4 巷道动静组合支护实例 531 参考文献 533 第14章 矿山岩体工程微震监测 536 14.1 微震监测原理 536 14.1.1 震源定位 536 14.1.2 主要微震参数 537 14.1.3 微震源机制 540 14.2 监测网的确定及优化 542 14.2.1 重点监测区域确定 542 14.2.2 矿区应力三维数值分析 543 14.2.3 监测点位置分布及优化方案 546 14.3 无需预先测速的微震震源定位理论 556 14.3.1 传统定位方法数学拟合形式 556 14.3.2 无需预先测速率的微震定位的数学形式 558 14.3.3 误差分析及算例 560 14.3.4 现场微震震源定位的爆破试验及分析 565 14.4 大规模开采矿山区域性危险地震预测 567 14.4.1 地震视应力和位移特性 567 14.4.2 区域性地震成核预测模型 570 14.4.3 应力状态和变形参数时间序列 572 参考文献 574 第15章 应力波理论在岩土工程中的应用 578 15.1 冲击破岩 578 15.1.1 冲击破岩机械的受力和效率分析 579 15.1.2 人射应力波形对能量传递效率的影响 591 15.1.3 冲击凿入系统的电算模拟 593 15.1.4 冲击凿岩机具设计中的几个问题 596 15.2 桩基工程 598 15.2.1 应力波在桩基中的发展过程 598 15.2.2 波动理论在桩基工程中的应用 600 15.2.3 动测法存在的问题 609 15.3 强夯 610 15.3.1 强夯引起的波动与加固原理 611 15.3.2 锤重、落距与加固深度的关系 614 15.3.3 散体岩料的动压固效果 616 15.4 岩土工程中的无损检测 622 15.4.1 混凝土无损检测 622 15.4.2 锚杆无损检测 626 15.5 防护工程 629 15.5.1 爆炸波对地下坑道的破坏机理 629 15.5.2 坑道安全防护层厚度计算方法 631 15.5.3 地下硐室抗爆设计 633 参考文献 638 索引 640 彩图 CONTENTS Preface CHAPTER 1 ROCK DYNAMIC TEST APPARATUS AND TEST TECHNOLOGY 1 1.1.1 Principle of rapid loading device 2 1.1.2 Several rapid loading devices 4 1.1.3 Rock testing methods at intermedium strain rate(lOs-1) 9 1.2 Rock dynamic compressive test device and test technology 18 1.2.1 Evolution and development of SHPB 18 1.2.2 Test principle of SHPB device 19 1.2.3 Simplified analysis on stress uniformity for rock samples 24 1.2.4 Principle and method of data auto-acquisilion and processing system 28 1.3 Rock impact loading test system 31 1.3.1 Horizontal impact testing machine driven by pneumatics 31 1.3.2 Large diameter impact testing machine driven by nitrogen 33 1.3.3 Measuring system for dynamic tests 35 1.3.4 Signal and data processing sotware 37 1.4 Modified configurations of SHPB 39 1.4.1 Triaxial split Hopkinson pressure bar 39 1.4.2 Split Hopkinson tensile bar 43 1.4.3 Split Hopkinson torsion bar 45 1.4.4 Some other modified devices 47 1.5 Dynamic r.ensile test methods for rock-like materials 49 1.5.2 Indirect dynamic tensile test 50 1.6 Ultra-dynamic test instrumentations for rocks 56 1.6.1 Several differern types of test devices 56 1.6.2 Testing principle of gas gun 57 1.6.3 Specimen layout of plaie impact test 60 References 62 CHAPTER 2REASONABLE LOADING WAVEFORMS FOR ROCK IMPACT TEST AND ROCK DYNAMIC TEST METHODS 67 2.1 Stress waveform generated by pistons 67 2.1.2 Computing method of waveform generated by complex pistons 72 2.2 Dispersion of rect.angular waves and rock dynamic sl.ress-strain curves 80 2.2.1 Dispersion of propagation of different waves in rocks 80 2.2.2 Stress-strain curves of rocks obtained by SHPB with rectangular loading 72 2.2.3 Stress-strain-strain rate relationships of rocks under diferent loading waves 89 2.3 Reasonable loading ways for dynamic tests of rock-like materials 91 2.3.2 Half-sine wave loading generated by a special piston 94 2.3.3 Loading conditions for constant stain rate and experimental verification 96 2.4 New method for obtaining constitutive relations of rock at constant strain rate 99 2.4.1 Three-dimensional scatter processing method for vSHPB test data 99 2.4.2 Explanation of three-dimensional scatter processing results 103 2.5 Suggested dynamic test methods for rocks 104 2.5.1 Test system and parameters 105 2.5.2 Dynamic compressive test 105 2.5.3 Dynamic tensile test with Brazilian disc method 107 2.5.4 Dynamic fracture toughness (model) test 108 References 110 CHAPTER 3INVERSE DESIGN FOR REASONABLE LOADING WAVEFORMS AND NUMERICAL SIMULATION OF TEST SYSTEM 113 3.1 Inverse design theory for piston geometry with given waveform 113 3.1.1 Stress waveform by impact of cylindrical piston on long rod 113 3.1.2 Stress waveform by impact of variable cross-section cylindrical piston on long rod 115 3.1.3 Stress waveform by impact of conical piston on long rod 116 3.1.4 Inverse design for piston geometry based on one-dimensional stress wave theory 118 3.2 Piston design corresponding to half-sine wave 119 3.2.1 Inverse design of different size piston generating half-sine wave 120 3.2.2 Dynamic tests of rock by half-sine waves loading 122 3.3 Stress wave characteristics in SHPB system with half-since wave loading 123 3.3.1 Stress uniformity analysis of rod with different contact conditions 123 3.3.2 Dynamic response of SHPB by eccentric impact of a special piston on rod 127 3.4 Calibration of SHPB test wirh special pisl.on generating half-sine 3.4.1 Relationship between piston impact velocity and incident stress 131 3.4.2 Calibration steps for SHPB system with special piston 133 3.5 Numerical simulation of SHPB system with half-sine waveform 134 3.5.1 Numerical model of SHPB system with half-sine waveform 135 3.5.2 Numerical simulation of SHPB by particle flow method 139 3.5.3 Influence of strain rate effect 147 References 152 CHAPTER 4TEST TECHNIQUE UNDER COUPLED STATIC-DYNAMIC LOADS AND THERMAL-MECHANICAL CONDITIONS 155 4.1 Test technique for rocks under coupled static-dynamic loads 155 4.1.1 Test technique under static load and low frequency dynamic disturbance 156 4.1.2 Test system for coupled static-dynamic loads based on SHPB 158 4.2 Rock dynamic test device and r.echnology under coupled thermalmechanical condition 162 4.2.1 Rock dynamic test device under coupled thermal-mechanical condition 163 4.2.2 Experimental setup and procedure 164 4.3 Test system for rock fragmentation under combined static-dynamic loads 165 4.3.1 Test principle of rock fragmentation under combined static-dynamic loads 165 4.3.2 Test equipment of rock fragmentation under combined static-dynamic loads 166 4.4 True triaxial test system for rocks under induced disturbance 170 4.4.1 Test system description 170 4.4.2 Technical parameters of test system 174 References 175 CHAPTER 5 MECHANICAL PROPERTIES OF ROCKS UNDER IMPACT LOADS 176 5.1 Rock dynamic strength 176 5.1.1 Stress-strain relationship of rocks 177 5.1.2 Relationship beiween rock dynamic strength and strain rate 177 5.1.3 Effects of loading waveform and duration time 185 5.1.4 Size effects on rock dynamic 186 5.2 Dynamic fracture criterion of rocks 192 5.2.1 Grady-Kipp model 192 5.2.2 Steverding ehnigk dynamic fracture criterion 197 5.3 Accumulation of rock dynamic damage 200 5.3.1 Fatigue damage of rock by stress wave loading 201 5.3.2 Damage evolution law of rock under repeated impact 203 5.4 Dynamic mechanical properties of rocks at high temperature 208 5.4.1 Thermal effect on density and wave velocity of rocks 208 5.4.2 Thermal effect on dynamic tensile and compressive properties of rocks 209 5.4.3 Thermal efect on dynamic fracture properties of rocks 215 References 217 CHAPTER 6 FAILURE CHARACTERISTICS OF ROCK UNDER COUPLED STATIC-DYNAMIC LOADS 221 6.1 Mechanical properties of rock under static load and low frequency disturbance 221 6.1.1 One-dimensional coupled loads 221 6.1.2 Two-dimensional coupled loads 224 6.1.3 Inluence of frequency and magnitude of dynamic loads 227 6.2 Mechanical properties of rock under coupled static load and impact load 231 6.2.1 Influence of static load with constant impact load 231 6.2.2 Influence of impact load with constant static load 234 6.3 Constitutive models of rock under coupled static-dynamic loads 239 6.3.1 Basicassumptions 239 6.3.2 Rock constitutive models under one-dimensional coupled static-dynamic loads240 6.3.3 Rock constitutive models under three-dimensional coupled static-dynamic loads 241 6.3.4 Verification of constitutive models by tests 245 6.4 Rock dynamic propert.ies under coupled thermal-mechanical effects 250 6.4.1 Influence of temperature wirh certain static pressure 250 6.4.2 Influence of static pressure with certain temperature 253 6.4.3 Dynamic constnutive model of rock under coupled thermal-mechanical effects 255 References 257 CHAPTER 7 DISSIPATION OF STRESS WAVE ENERGY IN ROCKS 258 7.1 Energy distribur.ion in rock dynamic fragmentation 258 7.2 Energy dissipation in rock by different stress waves loading 260 7.2.1 Loading in rectangular wave 261 7.2.2 Loading in exponential wave 264 7.2.3 Loadinginbellwave 265 7.2.4 Useless dissipated elastic wave energy value in rocks 267 7.2.5 Effects of duration time and waveforms 268 7.3 Absorption of energy of stress wave in rocks 269 7.3.1 Analysis of energy absorption in rocks 269 7.3.2 Incident, reflection, transmission and absorption energy in rocks 271 7.3.3 Testing results of absorption energy of stress wave with different duration time in rocks 274 7.4 Energy dissipation in rock loading by stress wave with different loading waveforms 276 7.4.1 Relationship between energy consumption in rock and incident energy 276 7.4.2 Degree of fragmentation at different loading conditions 278 7.4.3 Stress wave form to achieve maximum rock fragmentation 280 7.5 Energy consumption law for rock failure under coupled staticdynamic loads 282 7.5.1 Calculation and test results of energy release in rock under coupled staticdynamicloads 282 7.5.2 Energy absorption law in rock under 3-D loading and unloading process 285 7.5.3 Effect of unloading c,onfining pressure on rock energy absorption 286 References 287 CHAPTER 8 CHARACTERISTICS OF ROCK FRAGMENTATION UNDER COMBINED STATIC AND DYNAMIC LOADS 290 8.1 Theoretical analysis of rock fragmentar.ion under combined loads 290 8.1.1 Rock fragmentation characteristic curves under combined loads 290 8.1.2 Mechanical analysis in rock fragmentation under combined loads 292 8.1.3 Damage and fracrure analysis in rock fragmenration under combined loads 293 8.2 Numerical analysis in rock fragmentation under combined static and 8.2.1 Numerical analysis in rock fragmentation under static load 300 8.2.2 Numerical analysis in rock fragmentation under impact load 301 8.2.3 Numerical analysis in rock fragmentation under combined loads 301 8.3 Experiments of rock fragmentation under combined static and dynamicloads 303 8.3.1 Fragmentaiion experiments under coupled static and impact loads 304 8.3.2 Cutting experiments under coupled static and impact loads 307 8.3.3 Fragmentation experiments under combined water jet and static-impact loads 311 References 313 CHAPTER 9 PROPAGATION OF STRESS WAVES AT DIFFERENT GEOLOGICAL INTERFACES 315 9.1 Reflection and transmission of one-dimensional longitudinal wave in rod 315 9.2 Reflecr.ion and refraction of P-wave and S-wave alfully bonded interfaces 317 9.2.1 Wave reflection on free surface 317 9.2.2 Wave reflection and refraction at interface of two medium 322 9.3 Wave reflection and refraction at slippery interface and dynamic slip criterion of rock mass 325 9.3.1 Wave relection and reraction at slippery interface 325 9.3.2 Energy flow distribution at interface and dynamic slip criterion of rock mass 331 9.3.3 0verall effects of interface near blasting source 334 9.4 Stress wave propagation at closed joints 336 9.4.1 P-wave propagation at joints with linear normal deformation 336 9.4.2 Vertical incident P-wave propagation at joints with non-linear normaldeformation 341 9.4.3 Effect of iniiial stiffness and frequency on reflecrion and transmission factors 342 9.5 Srress wave propagat.ion at open joints 346 9.5.1 Analytical model of slress wave propagation at open joinls 346 9.5.2 Energy transmission of stress waves with different waveforms at open joints 351 9.6 Stress wave propagation in layered rock mass 357 9.6.1 Equivalent wave impedance method 357 9.6.2 Transmitted waveform of stress wave propagated in sandwich structure 360 9.6.3 Energy transfer of stress wave through interlayer 365 9.7 Detonation wave and reasonable matching criterion between rock explosive 366 9.7.1 Traditional viewpoint of reasonable impedance matching 367 9.7.2 Interaction model of explosive detonation in rock mass 368 9.7.3 Reasonable impedance matching criterion between rock and explosive 370 9.7.4 Reasonable impedance matching between conventional explosives and different rock mass 373 References 376 CHAPTER 10 STRESS V~AVE PROPAGMION IN ROCK MASS WITH CAWIY 378 10.1 Strain waves generated by blasting in rock mass 378 10.1.1 Synthesis of wave forms generated by a linear explosive charge 378 10.1.2 Effects of position and orientation on the wave shapes 381 10.2 PPV empirical formula and damage crileria 389 10.2.1 PPV damage criterion in different rock conditions 389 10.2.3 Bench blasting in open-pit mine wirh cavity 393 10.3 Numerical simulation of stress wave propagation in rock mass with cavity 398 10.3.1 Geometric model 398 10.3.2 Input of blastingload 400 10.3.3 Numericalmodel 402 10.4 Srabiliry analysis of cavil.y under bench blasting 405 10.4.1 Stress propagation on ground surface 405 10.4.2 Stability analysis of cavity under bench blasting 407 10.4.3 Calculation of the mimmun safety distance 410 References 412 CHAPTER 11 STRESS WAVE PROPAGATION IN PIEZOELECTRIC ROCK MASS CONTAING QUARTZ 414 11.1 Coupled model between stress wave and electromagnetic wave 414 11.1.1 Coupled mechanical-electrical wave equations 414 11.1.2 Coupled theory beiween stress wave and elecrromagnetic wave 415 11.2 Effect of joint on electromagneiic emission in rock mass 421 11.2.1 Effect of linear joint on electromagnetic emission 421 11.2.2 Effect of non-linear joint on electromagnetic emission 423 11.2.3 Calculation and discussion of joint effecr on electromagnetic emission 424 11.3 Relationship between electromagner.ic emission and rock parameters 428 11.3.2 Relationship between electromagnetic emission frequency and rock parameters 430 11.3.3 Relationship between elecrromagnetic ermssion amplitude and rock mass parameters 431 11.4.1 Frequency and amplitude of electromagnetic emission 434 11.4.2 Surface effects of electromagnetic emission 435 11.4.3 Analysis on abnormal electromagnetic emission for strong shocks or at rock fracture 435 References 437 CHAPTER 12 DYNAMIC CHARACTERISTICS OF HIGHLY STRESSED ROCK MASS AND EFFECTIVE UTILIZATION OF HIGH STRESS 440 12.1 Slabbing failure of highly stressed hard rock 440 12.1.1 Performance of slabbing failure for highly stressed hard rock 440 12.1.2 Slabbing failure of hard rock under uniaxial compression 442 12.1.3 Slabbing failure of hard rock under true triaxial compression with unloading process 450 12.2 Spalling failure of rock mass under impact 456 12.2.1 Performance of spalling failure and occurrence condition 456 12.2.2 Spalling failure of hard rock under one-dimensional impact 458 12.2.3 Damage evolutionary relationship during spalling failure process 460 12.3 Failure characterist.ics of highly sr.ressed pillar under dynamic 12.3.1 Mechanical model of mining pillar under dynamic disturbance 462 12.3.2 3D numerical analysis of mining pillar under dynamic disturbance 465 12.3.3 Strain energy variation in mining pillar under different dynamic disturbance 469 12.4 Zonal disintegration of highly stressed rock mass and kinetic interpretation 470 12.4.1 Review of zonal disintegration in highly stressed rock mass 471 12.4.2 Discontinuous failure of highly stressed rock mass under unloading process 475 12.4.3 Discontinuous failure of highly stressed rock mass under excavation loadingprocess 482 12.5 Induced fracture and non-blasting continuous mining for highly-stressed rock mass 487 12.5.1 Concept and application of non-blasting continuous mining 487 12.5.2 Theory and application of induced racture by unloading in rock mass 488 12.5.3 Feasibility on non-blasting continuous mining by inducing rock fracture 491 References 496 CHAPTER 13 DYNAMIC INTERPRETATION OF ROCKBURST IN HARD ROCK AT GREAT DEPTH AND ENGINEERING PROTECTION 499 13.1 Occurrence conditions and criteria of rockburst 499 13.1.2 Mechanical conditions and criteria of rock burst 501 13.1.3 Dynamic disturbance and induced rock burst in deep mining 505 13.2 Elastic energy release criterion of rock burst 508 13.2.1 Rock energy analysis in one-dimensional coupled static-dynamic loading tes 508 13.2.2 Rock burst occurrence criterion based on both static and dynamic energy index 513 13.2.3 Laboratory simulation of rockbursi in highly siressed rock mass under dynamic disturbance 514 13.3 Rock support technology for burst-prone and highly stressed rock mass 518 13.3.1 Rock support system based on dynamics 518 13.3.2 Power source analysis for rockburst based on self-stabiliry and lime-varying structure 521 13.3.3 Support technology based on coupled static and dynamic loads 527 13.3.4 Support case based on coupLed static and dynamic loads 531 References 533 CHAPTER 14 MICROSEISMIC MONITORING IN MINING ENGINEERING 536 14.1 Theory of microseismic monitoring 536 14.1.1 Hypocentral10cation 536 14.1.2 Main microseismic parameters 537 14.1.3 Focalmechanism 540 14.2 Determination and optimization of monitoring network 542 14.2.1 Detennination of focused area 542 14.2.2 Numerical analysis of three-dimensional srress in mmes 543 14.2.3 Positional distribution and optimization of sensors 546 14.3 Theory of hypocentral location without pre-measured wave velocity 556 14.3.1 Mathematical fitting equations of traditional methods 556 14.3.2 Mathematical firting equations of hypocenrral locar.ion without pre-measured wave velocity 558 14.3.3 Error analysis and case study 560 14.3.4 Blasting experiments in situ and corresponding analysis 565 14.4 Areal hazardous seismic prediction in large-scale mining 567 14.4.1 Characteristics of apparent stress and deformation 567 14.4.2 Conceptual model of seismic nucleation for areal seismology 570 14.4.3 Time series o stress state and deformation 572 References 574 CHAPTER 15 APPLICATION OF STRESS WAVE THEORY IN GEOTECHNICAL ENGINEERING 578 15.1 Rock fragmentation by impact 578 15.1.1 Analysis on force and efficiency of impact drill machine 579 15.1.2 Influence of incident stress waveform on energy transfer efficiency 591 15.1.3 Computer simulation of percussive penetration system 593 15.1.4 Several problems on design of drilling machine 596 15.2 Pile foundation engineering 598 15.2.1 Development process of stress wave theory in pile foundation 598 15.2.2 Application of wave theory in pile foundation engineering 600 15.2.3 Problems of dynamic pile test method 609 15.3 Dynamic compaction 610 15.3.1 Induced wave by dynamic compaction and reinforcing principle 611 15.3.2 Relationship between hammer weight, drop height and reinforcing depth 614 15.3.3 Dynamic reinforcing effects of granular rock material 616 15.4 Nondestructive testing in geotechnical engineering 622 15.4.1 Nondestructive testing for concrete 622 15.4.2 Nondestructive testing for rock bolts 626 15.5 Protection engineering 629 15.5.1 Failure mechanism of underground tunnels by blasting wave 629 15.5.2 Calculation methods for safety protective layer thickness of tunnels 631 15.5.3 Anti-explosion design of underground chambers 633 References 638 INDEX 640 COLOR FIGURES