0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 机械工程 > 基于数值模拟的设计理论与方法(英)

相同语种的商品

浏览历史

基于数值模拟的设计理论与方法(英)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
基于数值模拟的设计理论与方法(英)
  • 书号:9787030683632
    作者:韩旭,刘杰
  • 外文书名:
  • 装帧:圆脊精装
    开本:B5
  • 页数:258
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:2021-04-01
  • 所属分类:
  • 定价: ¥198.00元
    售价: ¥156.42元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

This book systematically introduces readers to advanced design theory and methods, including precise modeling based on inverse techniques, rapid structure computation, optimization design, and uncertainty analysis. It describes mechanical design theory, focusing on the key common technologies of simulation-based mechanical design.
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    1 Introduction 1
    1.1 Background and Significance 1
    1.2 Key Scientific Issues and Technical Challenges 4
    1.3 State-of-the-Art 7
    1.3.1 Theory and Methods for High-Fidelity Numerical Modeling 7
    1.3.2 Theory and Methods for Rapid Structural Analysis for Complex Equipment 9
    1.3.3 Theory and Methods for Efficient Structural Optimization Design 10
    1.3.4 Theory and Methods for Uncertainty Analysis and Reliability Design 11
    1.4 Contents of This Book 12
    References 14
    2 Introduction to High-Fidelity Numerical Simulation Modeling Methods 17
    2.1 Engineering Background and Significance 17
    2.2 Modeling Based on Computational Inverse Techniques 20
    References 26
    3 Computational Inverse Techniques 29
    3.1 Introduction 29
    3.2 Sensitivity Analysis Methods 31
    3.2.1 Local and Global Sensitivity Analysis 31
    3.2.2 Direct Integral-Based GSA Method 32
    3.2.3 Numerical Examples 37
    3.2.4 Engineering Application: Global Sensitivity Analysis of Vehicle Roof Structure 38
    3.3 Regularization Methods for Dl-Posed Problem 41
    3.3.1 III-Posedness Analysis 41
    3.3.2 Regularization Methods 42
    3.3.3 Selection of Regularization Parameter 47
    3.3.4 Application of Regularization Method to Model Parameter Identification 50
    3.4 Computational Inverse Algorithms 53
    3.4.1 Gradicnt Itcration-Bascd Computational Inverse Algorithm 55
    3.4.2 Intelligent Evolutionary-Based Computational Inverse Algorithm 59
    3.4.3 Hybrid Inverse Algorithm 61
    3.5 Conclusions 63
    Rcfcrenccs 64
    4 Computational Inverse for Modleling Parameters 67
    4.1 Introduction 67
    4.2 Identification of Model Characteristic Parameters 68
    4.2.1 Material Parameter ldentification for Stamping Plate 68
    4.2.2 Dynamic Constitutive Parameter Identification for Concretc Matcrial 72
    4.3 Identification of Model Environment Parameters 79
    4.3.1 Dynamic Load Identification for Cylinder Structure 79
    4.3.2 vehicle Crash Condition Identification 82
    4.4 Conclusions 85
    References 86
    5 Introduction to Rapid Structural Analysis 89
    5.1 Engineering Background and Significance 89
    5.2 surrogate Model Methods 90
    5.3 Model Order Reduction Methods 93
    References 94
    6 Rapid Structural Analysis Based on Surrogate Models 97
    6.1 Introduction 97
    6.2 Polynomial Response Surface Based on Structural selection Technique 98
    6.2.1 Polynomial Structure Selection Based on Error Reduction Ratio 98
    6.2.2 Numerical Example 100
    6.2.3 Engineering Application: Nonlincar Output Force Modeling for Hydro-Pneumatic Suspension 101
    6.3 Surrogate Model Based on Adaptive Radial Basis Function 105
    6.3.1 Selection of Sample and Testing Points 106
    6.3.2 Optimization of the Shape Parameters 108
    6.3.3 RBF Model Updating Procedure 108
    6.3.4 Numerical Examples 110
    6.3.5 Engineering Application: Surrogate Model Construction for Crash Worthiness of Thin-Walled Beam Structure 112
    6.4 High Dimensional Model Representation 115
    6.4.1 Improved HDMR 116
    6.4.2 Analysis of Calculation Efficiency 119
    6.4.3 Numerical Example 120
    6.5 Conclusions 122
    References 123
    7 Rapid Structural Analysis Based on Reduced Basis Method 125
    7.1 Introduction 125
    7.2 The RBM for Rapid Analysis of Structural Static Responses 126
    7.2.1 The Flow of Rapid Calculation Based on RBM 126
    7.2.2 Construction of the Reduced Basis Space 129
    7.2.3 Engineering Application: Rapid Analysis of Cab Structure 130
    7.3 The RBM for Rapid Analysis of Structural Dynamic Responses 132
    7.3.1 Parameterized Description of Structural Dynamics 132
    7.3.2 Construction of the Reduced Basis Space Based on Time Domain Integration 133
    7.3.3 Projection Reduction Based on Least Squares 135
    7.3.4 Numerical Example 136
    7.4 Conclusions 138
    References 140
    8 Introduction to Multi-objective Optimization Design 141
    8.1 Characteristics of Multi-objective Optimization 141
    8.2 Optimal Solution Set in Multi-objective Optimization 143
    8.3 Multi-objective Optimization Methods 144
    8.3.1 Preference-Based Methods 144
    8.3.2 Generating Methods Based on Evolutionary Algorithms 146
    References 150
    9 Micro Multi-objective Genetic Algorithm 153
    9.1 Introduction 153
    9.2 Procedure of uMOGA 154
    9.3 Implementation Techniques of uMOGA 156
    9.3.1 Non-dominated Sorting 156
    9.3.2 Population Diversity Preservation Strategies 158
    9.3.3 Elite Individual Preserving Mechanism 159
    9.4 Algorithm Performance Evaluation 160
    9.4.1 Numerical Examples 160
    9.4.2 Engineering Testing Example 167
    9.5 Engineering Applications 169
    9.5.1 Optimization Design of Guide Mechanism of Vehicle Suspension 169
    9.5.2 Optimization Design of Variable Blank Holder Force in Sheet Metal Forming 174
    9.6 Conclusions 177
    References 177
    10 Multi-objective Optimization Design Based on Surrogate Models 179
    10.1 Introduction 179
    10.2 Multi-objective Optimization Algorithm Based on Intelligent Sampling 182
    10.2.1 Intelligent Sampling Technology 182
    10.2.2 Convergence Criteria 184
    10.2.3 Procedure of IS-uMOGA 185
    10.2.4 Performance Tests 187
    10.2.5 Engineering Application: Multi-objective Optimization Design of Commercial Vehicle Cab Structure 192
    10.3 Multi-objective Optimization Algorithm Based on Sequential Surrogate Model 197
    10.3.1 Multi-objective Trust Region Model Management 198
    10.3.2 Sample Inheriting Strategy 200
    10.3.3 Computational Procedure 201
    10.3.4 Performance Test 204
    10.3.5 Engineering Application: Multi-objective Optimization Design of the Door Structure of a Minibus 207
    10.4 Conclusions 212
    References 213
    11 Introduction to Uncertain Optimization Design 215
    11.1 Stochastic Programming and Fuzzy Programming 215
    11.2 Interval Optimization 217
    References 219
    12 Uncertain Optimization Design Based on Interval Structure Analysis 221
    12.1 Introduction 221
    12.2 The General Form of Nonlinear Interval Optimization 221
    12.3 Interval Optimization Model 223
    12.3.1 Interval Order Rclation and Transformation of Uncertain Objective Function 223
    12.3.2 Interval Possibility Degree and Transformation of Uncertain Constraints 225
    12.3.3 Deterministic Optimization 229
    12.4 Interval Structure Analysis Method 23012.5 Nonlinear Interval Optimization Algorithm Based on Interval StructureAnalysis 233
    12.6 Engineering Applications 235
    12.6.1 Uncertain Optimization Design of Vehicle Frame Structure 235
    12.6.2 Uncertain Optimization Design of Occupant Restraint System 238
    12.7 Conclusions 241
    References 241
    13 Interval Optimization Design Based on Surrogate Models 243
    13.1 Introduction 24313.2 Interval Optimization Algorithm Based on Surrogate Model Management Strategy 243
    13.2.1 Approximate Modeling for Uncertain Optimization 244
    13.2.2 Design Space Updating 245
    13.2.3 Calculation of the Actual Penalty Function 246
    13.2.4 Algorithm Flow 248
    13.2.5 Engineering Application: Uncertain Optimization for Grinder Spindlc 249
    13.3 Interval Optimization Algorithm with Local-Densifying Surrogatc Model 251
    13.3.1 Approximate Uncertain Optimization Modeling 252
    13.3.2 Algorithm Flow 253
    13.3.3 Engineering Application: Crashworthiness Design on a Thin-Walled Beam of a Vehicle Body 254
    13.4 Conclusions 258
    References 258
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证