0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 航空/航天 > Spacecraft Attitude Control: A Linear Matrix Inequality Approach

相同语种的商品

浏览历史

Spacecraft Attitude Control: A Linear Matrix Inequality Approach


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
Spacecraft Attitude Control: A Linear Matrix Inequality Approach
  • 书号:9787030719782
    作者:刘闯等
  • 外文书名:
  • 装帧:平装
    开本:特16
  • 页数:370
    字数:430000
    语种:en
  • 出版社:科学出版社
    出版时间:2022-06-01
  • 所属分类:
  • 定价: ¥200.00元
    售价: ¥158.00元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书凝聚了作者在航天器姿态控制领域近十年的原创性研究成果,系统研究了多源复杂扰动下姿态稳定控制方法。全书共11章。第1章对线性矩阵不等式方法与航天器姿态动力学进行了介绍,为后续控制系统设计奠定理论基础;第2~6章介绍了刚体航天器姿态稳定控制方法,主要包括:状态反馈非脆弱控制、动态输出反馈非脆弱控制、基于中间状态观测器的容错时滞控制与容错非脆弱控制,以及基于干扰观测器的输入受限控制;第7~9章介绍了柔性航天器姿态稳定控制方法,主要包括:具有极点配置约束的改进混合H2/H∞控制、非脆弱H∞控制,以及基于主动振动抑制的抗干扰控制;第10章介绍了航天器混沌姿态同步跟踪控制方法,并在第11章给出了欠驱动混沌姿态角速度稳定控制方法供读者参考。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Preface
    1. Introduction of basic knowledge 1
    1.1 Linear matrix inequalities 1
    1.1.1 What are linear matrix inequalities? 1
    1.1.2 Useful lemmas for linear matrix inequalities 8
    1.1.3 Advantages of linear matrix inequalities 14
    1.1.4 Some standard linear matrix inequalitie problems 15
    1.2 Spacecraft attitude kinematics and dynamics 21
    1.2.1 Attitude representations 22
    1.2.2 Attitude kinematics 28
    1.2.3 Attitude dynamics 31
    References 34
    2. State feedback nonfragile control 37
    2.1 Introduction 37
    2.2 Problem formulation 38
    2.2.1 Attitude dynamics modeling 38
    2.2.2 Control objective 42
    2.3 State feedback nonfragile control law 43
    2.3.1 Some lemmas 43
    2.3.2 Sufficient conditions under additive perturbation 44
    2.3.3 Sufficient conditions under multiplicative perturbation 48
    2.4 Simulation test 50
    2.4.1 Simulation results under additive perturbation 51
    2.4.2 Simulation results under multiplicative perturbation 53
    2.4.3 Simulation results using a mixed H2/HN controller 55
    2.5 Conclusions 59
    References 60
    3. Dynamic output feedback nonfragile control 63
    3.1 Introduction 63
    3.2 Problem formulation 65
    3.2.1 Attitude system description 65
    3.2.2 Nonfragile control problem 68
    3.2.3 Control objective 70
    3.3 Dynamic output feedback nonfragile control law design 71
    3.3.1 Some lemmas 71
    3.3.2 Controller design under additive perturbation 76
    3.3.3 Controller design under multiplicative perturbation 79
    3.3.4 Controller design under coexisting additive and multiplicative perturbations 81
    3.4 Simulation test 87
    3.4.1 Simulation results under additive perturbation 87
    3.4.2 Simulation results under multiplicative perturbation 93
    3.4.3 Simulation results under coexisting additive and multiplicative perturbations 102
    3.5 Conclusions 105
    References 105
    4. Observer-based fault tolerant delayed control 107
    4.1 Introduction 107
    4.2 Problem formulation 110
    4.2.1 Attitude system description 110
    4.2.2 Control objective 113
    4.3 Observer-based fault tolerant control scheme 113
    4.3.1 Intermediate observer design 113
    4.3.2 Delayed controller design 114
    4.3.3 Control solution 115
    4.4 Simulation test 127
    4.4.1 Simulation results using the proposed controller 128
    4.4.2 Simulation results using the prediction-based sampled-dataHN controller 132
    4.4.3 Comparison analysis using different controllers 134
    4.5 Conclusions 136
    References 136
    5. Observer-based fault tolerant nonfragile control 139
    5.1 Introduction 139
    5.2 Problem formulation 142
    5.2.1 Attitude system description 142
    5.2.2 Stochastically intermediate observer design 146
    5.2.3 Nonfragile controller design 147
    5.2.4 Control objective 148
    5.3 Feasible solution for both cases 148
    5.3.1 Some lemmas 148
    5.3.2 Sufficient conditions under additive perturbation 149
    5.3.3 Sufficient conditions under multiplicative perturbation 152
    5.4 Simulation test 156
    5.4.1 Comparison analysis under additive perturbation 158
    5.4.2 Comparison analysis under multiplicative perturbation 166
    5.5 Conclusions 173
    References 173
    6. Disturbance observer-based controlwith input MRCs 177
    6.1 Introduction 177
    6.2 Problem formulation 180
    6.2.1 Attitude system description 180
    6.2.2 Control objective 182
    6.3 Controller design and analysis 182
    6.3.1 Some lemmas 183
    6.3.2 Coexisting conditions for observer and controller gains 184
    6.3.3 Proof and analysis 185
    6.4 Simulation test 191
    6.4.1 Nonzero angular rates 192
    6.4.2 Zero angular rates 195
    6.4.3 Evaluation indices for the three conditions 197
    6.4.4 Parametric influence on control performance 200
    6.5 Conclusions 202
    References 203
    7. Improved mixed H2/HN control with poles assignment constraint 205
    7.1 Introduction 205
    7.2 Problem formulation 208
    7.2.1 Flexible spacecraft dynamics with two bending modes 208
    7.2.2 HN and H2 performance constraint 209
    7.2.3 Poles assignment 210
    7.2.4 Control objective 211
    7.3 Improved mixed H2/HN control law 211
    7.3.1 Some lemmas 211
    7.3.2 H2 control 213
    7.3.3 Mixed H2/HN control 217
    7.4 Simulation test 219
    7.4.1 Simulation results using static output feedback controller 220
    7.4.2 Simulation results using improved mixed H2/HN controller 222
    7.4.3 Simulation results using a traditional mixed H2/HN controller 227
    7.4.4 Comparison analysis using different controllers 230
    7.5 Conclusions 230
    References 231
    8. Nonfragile HN controlwith input constraints 233
    8.1 Introduction 233
    8.2 Problem formulation 236
    8.2.1 Attitude system description of flexible spacecraft 236
    8.2.2 Passive and active vibration suppression cases 238
    8.2.3 Brief introduction on piezoelectric actuators 240
    8.2.4 Improved model and control objective 243
    8.3 Nonfragile HN control law 246
    8.3.1 Sufficient conditions under additive perturbation 246
    8.3.2 Sufficient conditions under multiplicative perturbation 250
    8.4 Simulation test 252
    8.4.1 Comparisons of control performance under additive perturbation 254
    8.4.2 Comparisons of control performance under multiplicative perturbation 264
    8.4.3 Simulation comparison analysis 274
    8.5 Conclusions 279
    References 280
    9. Antidisturbance controlwith active vibration suppression 283
    9.1 Introduction 283
    9.2 Problem formulation 285
    9.2.1 Attitude dynamics modeling 285
    9.2.2 Preliminaries 292
    9.2.3 Control objective 293
    9.3 Antidisturbance control law with input magnitude, and rate constraints 293
    9.3.1 Stochastically intermediate observer design 293
    9.3.2 Antidisturbance controller design 295
    9.3.3 Sufficient conditions for uniform ultimate boundedness 296
    9.3.4 Sufficient conditions for HN control strategy 299
    9.3.5 Sufficient conditions for input magnitude, and rate constraints 301
    9.4 Simulation test 309
    9.4.1 Simulation results using an antidisturbance controller 311
    9.4.2 Simulation results using a mixed H2/HN controller 317
    9.5 Conclusions 320
    References 320
    10. Chaotic attitude trackingcontrol 323
    10.1 Introduction 323
    10.2 Problem formulation 324
    10.2.1 Chaotic attitude dynamics 324
    10.2.2 Chaotic system characteristics and chaotic attractor 326
    10.2.3 Tracking error dynamics and control objective 326
    10.3 Adaptive variable structure control law 330
    10.4 Simulation test 332
    10.5 Conclusions 335
    References 335
    11. Underactuatedchaotic attitude stabilization control 337
    11.1 Introduction 337
    11.2 Problem formulation 339
    11.2.1 Chaotic attitude system description 339
    11.2.2 Two examples of Chen and Lu systems 340
    11.2.3 Control objective 342
    11.3 Sliding mode control law 344
    11.3.1 Reference trajectory design 344
    11.3.2 Controller design 345
    11.4 Simulation test 348
    11.4.1 Simulation results for the failure of one actuator 349
    11.4.2 Simulation results for failure of two actuators 351
    11.5 Conclusions 357
    References 357
    Index 361
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证