0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 分析/函数论 > 陶伯理论:百年进展

相同语种的商品

浏览历史

陶伯理论:百年进展


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
陶伯理论:百年进展
  • 书号:9787030183033
    作者:(荷)科雷瓦(Korevaar, J.)著
  • 外文书名:Tauberian Theory A century of Developments
  • 装帧:圆脊精装
    开本:B5
  • 页数:504
    字数:594
    语种:英文
  • 出版社:科学出版社
    出版时间:2016-04-27
  • 所属分类:O17 数学分析
  • 定价: ¥198.00元
    售价: ¥156.42元
  • 图书介质:
    按需印刷

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

内容介绍

样章试读

用户评论

全部咨询

  陶伯理论对级数和积分的可求和性判定的不同方法加以比较,确定它们何时收敛,给出渐近估计和余项估计。由陶伯理论的最初起源开始,作者介绍该理论的发展历程:他的专业评论再现了早期结果所引来的兴奋;论及困难而令人着迷的哈代-李特尔伍德定理及其出人意料的一个简洁证明;高度赞扬维纳基于傅里叶理信论的突破,引人入胜的“高指数”定理以及应用于概率论的Karamata正则变分理论。作者也提及盖尔范德对维纳理论的代数处理以及基本人的分布方法。介绍了博雷尔方法和“圆”方法的一个统一的新理论,本书还讨论研究素数定理的各种陶伯方法。书后附有大量参考文献和详细尽的索引。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • The Hardy-Littlewood Theorems
    1 Introduction
    2 Examples of Summability Methods Abelian Theorems and Tauberian Question
    3 Simple Applications of Cesa(')ro, Abel and Borel Summability
    4 Lambert Summability in Number Theory
    5 Tauber's Theorems for Abel Summability
    6 Tauberian Theorem for Cesa(')ro Summability
    7 Hardy-Littlewood Tauberians for Abel Summability
    8 Tauberians Involving Dirichlet Series
    9 Tauberians for Borel Summability
    10 Lambert Tauberian and Prime Number Theorem
    11 Karamata's Method for Power Series
    12 Wielandt's Variation on the Method
    13 Transition from Series to Integrals
    14 Extension of Tauber's Theorems to Laplace-Stieltjes Transforms
    15 Hardy-Littlewood Type Theorems Involving Laplace Transforms
    16 Other Tauberian Conditions: Slowly Decreasing Functions
    17 Asymptotics for Derivatives
    18 Integral Tauberians for Cesa(')ro Summability
    19 The Method of the Monotone Minorant
    20 Boundedness Theorem Involving a General-Kernel Transform
    21 Laplace-Stieltjes and Stieltjes Transform
    22 General Dirichlet Series
    23 The High-Indices Theorem
    24 Optimality of Tauberian Conditions
    25 Tauberian Theorems of Nonstandard Type
    26 Important Properties of the Zeta Function
    Wiener's Theory
    1 Introduction
    2 Wiener Problem: Pitt's Form
    3 Testing Equation for Wiener Kernels
    4 Original Wiener Problem
    5 Wiener's Theorem With Additions by Pitt
    6 Direct Applications of the Testing Equations
    7 Fourier Analysis of Wiener Kernels
    8 The Principal Wiener Theorems
    9 Proof of the Division Theorem
    10 Wiener Families of Kernels
    11 Distributional Approach to Wiener Theory
    12 General Tauberian for Lambert SummabilitY
    13 Wiener's 'Second Tauberian Theorem'
    14 A Wiener Theorem for Series
    15 Extensions
    16 Discussion of the Tauberian Conditions
    17 Landau-Ingham Asymptotics
    18 Ingham Summability
    19 Application of Wiener Theory to Harmonic Functions
    Ⅲ Complex Tauberian Theorems
    1 Introduction
    2 A Landau-Type Tauberian for Dirichlet Series
    3 Mellin Transforms
    4 The Wiener-Ikehara Theorem
    5 Newer Approach to Wiener-Ikehara
    6 Newman's Way to the PNT. Work of Ingham
    7 Laplace Transforms of Bounded Functions
    8 Application to Dirichlet Series and the PNT
    9 Laplace Transforms of Functions Bounded From Below
    10 Tauberian Conditions Other Than Boundedness
    11 An Optimal Constant in Theorem 10.1
    12 Fatou and Riesz. General Dirichlet Series
    13 Newer Extensions of Fatou-Riesz
    14 Pseudofunction Boundary Behavior
    15 Applications to Operator Theory
    16 Complex Remainder Theory
    17 The Remainder in Fatou's Theorem
    18 Remainders in Hardy-Littlewood Theorems Involving Power Series
    19 A Remainder for the Stieltjes Transform
    Ⅳ Karamata's Heritage: Regular Variation
    1 Introduction
    2 Slow and Regular Variation
    3 Proof of the Basic Properties
    4 Possible Pathology
    5 Karamata's Characterization of Regularly. Varying Functions
    6 Related Classes of Functions
    7 Integral Transforms and Regular Variation: Introduction
    8 Karamata's Theorem for Laplace Transforms
    9 Stieltjes and Other Transforms
    10 The Ratio Theorem
    11 Beurling Slow Variation
    12 A Result in Higher-Order Theory
    13 Mercerian Theorems
    14 Proof of Theorem 13.2
    15 Asymptotics Involving Large Laplace Transforms
    16 Transforms of Exponential Growth: Logarithmic Theory
    17 Strong Asymptotics: General Case
    18 Application to Exponential Growth
    19 Very Large Laplace Transforms
    20 Logarithmic Theory for Very Large Transforms
    21 Large Transforms: Complex Approach
    22 Proof of Proposition 21.4
    23 Asymptotics for Partitions
    24 Two-Sided Laplace Transforms
    Extensions of the Classical Theory
    1 Introduction
    2 Preliminaries on Banach Algebras
    3 Algebraic Form of Wiener's Theorem
    4 Weighted L1 Spaces
    5 Gelfand's Theory of Maximal Ideals
    6 Application to the Banach Algebra Aω = (Lω, C)
    7 Regularity Condition for Lω
    8 The Closed Maximal Ideals in Lω
    9 Related Questions Involving Weighted Spaces
    10 A Boundedness Theorem of Pitt
    11 Proof of Theorem 10.2, Part 1
    12 Theorem 10.2: Proof that S(y) = Q(eεY)
    13 Theorem 10.2: Proof that S(y) = Q{eφ(y)
    14 Boundedness Through Functional Analysis
    15 Limitable Sequences as Elements of an FK-space
    16 Perfect Matrix Methods
    17 Methods with Sectional Convergence
    18 Existence of (Limitable) Bounded Divergent Sequences
    19 Bounded Divergent Sequences, Continued
    20 Gap Tauberian Theorems
    21 The Abel Method
    22 Recurrent Events
    23 The Theorem of Erd6s, Feller and Pollard
    24 Milin's Theorem
    25 Some Propositions
    26 Proof of Milin's Theorem
    Ⅵ Borel Summability and General Circle Methods
    1 Introduction
    2 The Methods B and B'
    3 Borel Summability of Power Series
    4 The Borel Polygon
    5 General Circle Methods Fλ
    6 Auxiliary Estimates
    7 Series with Ostrowski Gaps
    8 Boundedness Results
    9 Integral Formulas forLimitability
    10 Integral Formulas: Case of Positive Sn
    11 First Form of theTauberian Theorem
    12 General Tauberian Theorem with Schmidt's Condition
    13 Tauberian Theorem: Case of Positive Sn
    14 AnApplication to Number Theory
    15High-Indices Theorems
    16 Restricted High-Indices Theorem for General Circle Methods
    17 The Borel High-Indices Theorem
    18 Discussion of the Tauberian Conditions
    19 Growth of Power Series with Square-Root Gaps
    20Euler Summability
    21 The Taylor Method and Other Special Circle Methods
    22 The Special Methods as Fλ-Methods
    23High-Indices Theorems for Special Methods
    24 Power Series Methods
    25 Proof of Theorem24.4
    Ⅶ Tauberian Remainder Theory
    1 Introduction
    2 Power Series and Laplace Transforms:How the Theory Developed
    3 Theorems for Laplace Transforms
    4 Proof of Theorems 3.1 and 3.2
    5 One-Sided L 1 Approximation
    6 Proof of Proposition 5.2
    7 Approximation of Smooth Functions
    8 Proof of Approximation Theorem 3.4
    9 Vanishing Remainders: Theorem 3.3
    10 Optimality of the Remainder Estimates
    11 Dirichlet Series and High Indices
    12 Proof of Theorem 11.2, Continued
    13 The Fourier Integral Method: Introduction
    14 Fourier Integral Method: A Model Theorem
    15 Auxiliary Inequality of Ganelius
    16 Proof of the Model Theorem
    17 A More General Theorem
    18 Application to Stieltjes Transforms
    19 Fourier Integral Method: Laplace-Stieltjes Transform
    20 Related Results
    21 Nonlinear Problems of Erd6s for Sequences
    22 Introduction to the Proof of Theorem 21.3
    23 Proof of Theorem 21.3, Continued
    24 An Example and Some Remarks
    25 Introduction to the Proof of Theorem 21.5
    26 The Fundamental Relation and a Reduction
    27 Proof of Theorem 25.1, Continued
    28 The End Game
    References
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证