0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 计算数学 > 计算不变量理论

相同语种的商品

浏览历史

计算不变量理论


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
计算不变量理论
  • 书号:9787030234926
    作者:Derksen
  • 外文书名:Computational Invariant Theory
  • 装帧:精装
    开本:B5
  • 页数:284
    字数:338000
    语种:英文
  • 出版社:科学出版社
    出版时间:2009-01
  • 所属分类:O17 数学分析
  • 定价: ¥66.00元
    售价: ¥52.14元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

内容介绍

样章试读

用户评论

全部咨询

This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Gröbner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory\\\\\\\\\\\\\\\', dynamical systems, and computer vision. The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be of more than passing interest.
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Introduction
    1 Constructive Ideal Theory
    1.1 Ideals and Gröbner Bases
    1.2 Elimination Ideals
    1.3 Syzygy Modules
    1.4 Hilbert Series
    1.5 The Radical Ideal
    1.6 Normalization
    2 Invariant Theory
    2.1 Invariant Rings
    2.2 Reductive Groups
    2.3 Categorical Quotients
    2.4 Homogeneous Systems of Parameters
    2.5 The Cohen-Macaulay Property of Invariant Rings
    2.6 Hilbert Series of Invariant Rings
    3 Invariant Theory of Finite Groups
    3.1 Homogeneous Components
    3.2 Molien's Formula
    3.3 Primary Invariants
    3.4 Cohen-Macaulayness
    3.5 Secondary Invariants
    3.6 Minimal Algebra Generators and Syzygies
    3.7 Properties of Invariant Rings
    3.8 Noether's Degree Bound
    3.9 Degree Bounds in the Modular Case
    3.10 Permutation Groups
    3.11 Ad Hoc Methods
    4 Invariant Theory of Reductive Groups
    4.1 Computing Invariants of Linearly Reductive Groups
    4.2 Improvements and Generalizations
    4.3 Invariants of Tori
    4.4 Invariants of SLn and GLn
    4.5 The Reynolds Operator
    4.6 Computing Hilbert Series
    4.7 Degree Bounds for Invariants
    4.8 Properties of Invariant Rings
    5 Applications of Invariant Theory
    5.1 Cohomology of Finite Groups
    5.2 Galois Group Computation
    5.3 Noether's Problem and Generic Polynomials
    5.4 Systems of Algebraic Equations with Symmetries
    5.5 Graph Theory
    5.6 Combinatorics
    5.7 Coding Theory
    5.8 Equivariant Dynamical Systems
    5.9 Material Science
    5.10 Computer Vision
    A Linear Algebraic Groups
    A.1 Linear Algebraic Groups
    A.2 The Lie Algebra of a Linear Algebraic Group
    A.3 Reductive and Semi-simple Groups
    A.4 Roots
    A.5 Representation Theory
    References
    Notation
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证