0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 几何/拓扑 > 离散几何中的研究问题

相同语种的商品

浏览历史

离散几何中的研究问题


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
离散几何中的研究问题
  • 书号:9787030182920
    作者:(美)布拉斯(Brass, P.)等著
  • 外文书名:Research Problems in Discrete Geometry
  • 装帧:圆脊精装
    开本:B5
  • 页数:516
    字数:614
    语种:英文
  • 出版社:科学出版社
    出版时间:2007-03-30
  • 所属分类:O18 几何、拓扑
  • 定价: ¥82.00元
    售价: ¥64.78元
  • 图书介质:

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

离散几何有着150余年的丰富历史,提出了甚至高中生都能理解的诸多公开问题。某些问题异常困难,并和数学其他领域的一些深层问题密切相关。然而,许多问题,甚至某些年代久远的问题,都可能被聪明的大学本科生或者高中生运用精妙构思和数学奥林匹克竞赛中的某些技巧所解决。
《离散几何中的研究问题》是由Leo Moser牵头,花费25年著成,书中包括500余个颇具吸引力的公开问题,理解其中许多问题并不需要太多的准备知识。书中的各章很大程度上内容自含,概述了离散几何,介绍了各个问题的历史细节及最重要的相关结果。
本书可作为参考书,供致力数学研究,热爱美妙数学问题并不遗余力地试图加以解决的那些专业数学家和研究生查阅。
本书的显著特色包括:
●500多个公开问题,其中某些问题历史久远,而某些问题为新近提出且从未出版;
●每章分为内容自含的各个部分,各部分均附有详实的参考文献;
●为寻找论文课题的研究生提供众多研究问题;
●包含离散几何的一个全面综述,突出介绍离散几何研究的前沿问题和发展前景;
●150多幅图表;
●Paul Erdös生前为本书早期版本所写的序言。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 0. Definitions and Notations
    1. Density Problems for Packings and Coverings
    1.1 Basic Questions and Definitions
    1.2 The Least Economical Convex Sets for Packing
    1.3 The Least Economical Convex Sets for Covering
    1.4 How Economical Are the Lattice Arrangements?
    1.5 Packing with Semidisks, and the Role of Symmetry
    1.6 Packing Equal Circles into Squares, Circles, Spheres
    1.7 Packing Equal Circles or Squares in a Strip
    1.8 The Densest Packing of Spheres
    1.9 The Densest Packings of Specific Convex Bodies
    1.10 Linking Packing and Covering Densities
    1.11 Sausage Problems and Catastrophes
    2. Structural Packing and Covering Problems
    2.1 Decomposition of Multiple Packings and Coverings
    2.2 Solid and Saturated Packings and Reduced Coverings
    2.3 Stable Packings and Coverings
    2.4 Kissing and Neighborly Convex Bodies
    2.5 Thin Packings with Many Neighbors
    2.6 Permeability and Blocking Light Rays
    3. Packing and Covering with Homothetic Copies
    3.1 Potato Bag Problems
    3.2 Covering a Convex Body with Its Homothetic Copies
    3.3 Levi-Hadwiger Covering Problem and Illumination
    3.4 Covering a BaH by Slabs
    3.5 Point Trapping and Impassable Lattice Arrangements
    4. Tiling Problems
    4.1 Tiling the Plane with Congruent Regions
    4.2 Aperiodic Tilings and Tilings with Fivefold Symmetry
    4.3 Tiling Space with Polytopes
    5. Distance Problems
    5.1 The Maximum Number of Unit Distances in the Plane
    5.2 The Number of Equal Distances in Other Spaces
    5.3 The Minimum Number of Distinct Distances in the Plane
    5.4 The Number of Distinct Distances in Other Spaces
    5.5 Repeated Distances in Point Sets in General Position
    5.6 Repeated Distances in Point Sets in Convex Position
    5.7 Frequent Small Distances and Touching Pairs
    5.8 Frequent Large Distances
    5.9 Chromatic Number of Unit-Distance Graphs
    5.10 Further Problems on Repeated Distances
    5.11 Integral or Rational Distances
    6. Problems on Repeated Subconfigurations
    6.1 Repeated Simplices and Other Patterns
    6.2 Repeated Directions, Angles, Areas
    6.3 Euclidean Ramsey Problems
    7. Incidence and Arrangement Problems
    7.1 The Maximum Number of Incidences
    7.2 Sylvester-Gallai-Type Problems
    7.3 Line Arrangements Spanned by a Point Set
    8. Problems on Points in General Position
    8.1 Structure of the Space of Order Types
    8.2 Convex Polygons and the Erdös-Szekeres Problem
    8.3 Halving Lines and Related Problems
    8.4 Extremal Number of Special Subconfigurations
    8.5 Other Problems on Points in General Position
    9. Graph Drawings and Geometric Graphs
    9.1 Graph Drawings
    9.2 Drawing Planar Graphs
    9.3 The Crossing Number
    9.4 Other Crossing Numbers
    9.5 From Thrackles to Forbidden Geometric Subgraphs
    9.6 Further Turin-Type Problems
    9.7 Ramsey-Type Problems
    9.8 Geometric Hypergraphs
    10. Lattice Point Problems
    10.1 Packing Lattice Points in Subspaces
    10.2 Covering Lattice Points by Subspaces
    10.3 Sets of Lattice Points Avoiding Other Regularities
    10.4 Visibility Problems for Lattice Points
    11. Geometric Inequalities
    11.1 Isoperimetric Inequalities for Polygons and Polytopes
    11.2 Heilbronn-Type Problems
    11.3 Circumscribed and Inscribed Convex Sets
    11.4 Universal Covers
    11.5 Approximation Problems
    12. Index
    12.1 Author Index
    12.2 Subject Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证