本书介绍子流形几何的基本知识,并有选择地介绍了某些专门的子流形几何理论。全书共分六章。第一章简要介绍黎曼几何基本知识;第二章介绍子流形几何的基本理论;第三章专门讨论极小子流形;第四章介绍全曲率、Gauss映射和有限型子流形;第五章研究实空间形式和复空间形式中的理想子流形;第六章研究切触度量(κ,μ)-空间中的子流形。 本书可供高等院校数学教师及科研单位的数学工作者参阅,也可作为数学专业研究生教材或教学参考书。
样章试读
目录
第一章 黎曼几何基本知识
§1 仿射联络
§2 黎曼度量与联络
§3 曲率
§4 共变微分
§5 活动标架法
第二章 子流形的基本理论
§1 子流形的概念与基本方程
§2 活动标架法下的计算
§3 一些重要概念
§4 超曲面
§5 黎曼浸没
第三章 极小子流形
§1 体积变分
§2 欧氏空间的极小子流形
§3 球面的极小子流形
§4 欧氏空间的极小锥面
§5 K?haler流形的复子流形
§6 射影空间的极小子流形
§7 极小曲率子流形
§8 极小曲面的Weierstrass表示
第四章 全曲率Gauss映射有限型子流形
§1 全绝对曲率
§2 全平均曲率
§3 Gauss映射
§4 有限型子流形
第五章 理想子流形
§1 理想子流形的概念
§2 实空间形式中的理想子流形
§3 复空间形式中的理想子流形
第六章 切触度量(κ,μ)-空间中的子流形
§1 切触度量(κ,μ)-空间
§2 切触度量(κ,μ)-空间中的子流形
§3 分类定理
主要参考文献
索引
]]>