0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 几何/拓扑 > 代数几何III:复代数簇,代数曲线及雅可比行列式

相同语种的商品

相同作者的商品

浏览历史

代数几何III:复代数簇,代数曲线及雅可比行列式


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
代数几何III:复代数簇,代数曲线及雅可比行列式
  • 书号:9787030234872
    作者:Parshin
  • 外文书名:Algebraic Geometry Ⅲ:Complex Algebraic Varieties,Algebraic Curves and Their Jacobians
  • 装帧:平装
    开本:B5
  • 页数:284
    字数:340000
    语种:英文
  • 出版社:科学出版社
    出版时间:2009-01
  • 所属分类:
  • 定价: ¥128.00元
    售价: ¥101.12元
  • 图书介质:
    按需印刷

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

The first contribution of this EMS volume on compilex algebraic geometry touches upon many of the central problems in this vast and very active area of current research. While it is much too short to provide complete coverage of this subject, it provides a succinct summary of the areas it covers, while providing in-depth coverage of certain very important fields.
The second part provides a brief and lucid introduction to the recent work on the interactions between the classicat area of the geometry of complex algebraic curves and their Jacobian varieties, and partial differential equations of mathematical physics. The paper discusses the work of Mumford, Novikov,, Krichever and Shiota and would be an excellent companion to the older elassics on the subject.
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • I. Complex Algebraic Varieties:Periods of Integrals and Hodge Structures
    Introduction
    Chapter 1 Classical Hodge Theory
    §1. Algebraic Varieties
    §2. Complex Manifolds
    §3. A Comparison Between Algebraic Varieties and Analytic Spaces
    §4. Complex Manifolds as C Manifolds
    §5. Connections on Holomorphic Vector Bundles
    §6. Hermitian Manifolds
    §7. Kähler Manifolds
    §8. Line Bundles and Divisors
    §9. The Kodaira Vanishing Theorem
    §10. Monodromy
    Chapter 2 Periods of Integrals on Algebraic Varieties
    §1. Classifying Space
    §2. Complex Tori
    §3. The Period Mapping
    §4. Variation of Hodge Structures
    §5. Torelli Theorems
    §6. Infinitesimal Variation of Hodge Structures
    Chapter 3 Torelli Theorems
    §1. Algebraic Curves
    §2. The Cubic Threefold
    §3. K3 Surfaces and Elliptic Pencils
    §4. Hypersurfaces
    §5. Counterexamples to Torelli Theorems
    Chapter 4 Mixed Hodge Structures
    §1. Definition of mixed Hodge structures
    §2. Mixed Hodge structure on the Cohomology of a Complete Variety with Normal Crossings
    §3. Cohomology of Smooth Varieties
    §4. The Invariant Subspace Theorem
    §5. Hodge Structure on the Cohomology of Smooth Hypersurfaces
    §6. Further Development of the Theory of Mixed Hodge Structures
    Chapter 5 Degenerations of Algebraic Varieties
    §1. Degenerations of Manifolds
    §2. The Limit Hodge Structure
    §3 The Clemens-Schmid Exact Sequence
    §4. An Application of the Clemens-Schmid Exact Sequence to the Degeneration of Curves
    §5. An Application of the Clemens-Schmid Exact Sequence to Surface Degenerations. The Relationship Between the Numerical Invariants of the Fibers Xt and X0
    §6. The Epimorphicity of the Period Mapping for K3 Surfaces
    Comments on the bibliography
    References
    II. Algebraic Curves and Their Jacobians
    Introduction
    §1. Applications
    1.1. Theory of Burnchall-Chaundy-Krichever
    1.2. Deformation of Commuting Differential Operators
    1.3. Kadomtsev-Petviashvili Equations
    1.4. Finite Dimensional Solutions of the KP Hierarchy
    1.5. Solutions of the Toda Lattice
    1.6. Solution of Algebraic Equations Using Theta-Constants
    §2. Special Divisors
    2.1. Varieties of Special Divisors and Linear Systems
    2.2. The Brill-Noether Matrix. The Brill-Noether Numbers
    2.3. Existence of Special Divisors
    2.4. Connectedness
    2.5. Special Curves. The General Case
    2.6. Singularities
    2.7. Infinitesimal Theory of Special Linear Systems
    2.8. GaussMappings
    2.9. Sharper Bounds on Dimensions
    2.10.Tangent Cones
    §3. Prymians
    3.1. Unbranched Double Covers
    3.2. Prymians and Prym Varieties
    3.3. Polarization Divisor
    3.4. Singularities of the Polarization Divisor
    3.5. Differences Between Prymians and Jacobians
    3.6. The Prym Map
    §4. Characterizing Jacobians
    4.1. The Variety of Jacobians
    4.2. The Andreotti-Meyer Subvariety
    4.3. Kummer Varieties
    4.4. Reducedness of θ∩(θ+p) and Trisecants
    4.5. The Characterization of Novikov-Krichever
    4.6. Schottky Relations
    References
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证