0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 几何/拓扑 > 拓扑学II:同伦和同调,经典流形

相同语种的商品

浏览历史

拓扑学II:同伦和同调,经典流形


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
拓扑学II:同伦和同调,经典流形
  • 书号:9787030235107
    作者:Fuchs
  • 外文书名:Topology Ⅱ:Homotopy and Homology, Classical Manifolds
  • 装帧:平装
    开本:B5
  • 页数:272
    字数:324000
    语种:英文
  • 出版社:科学出版社
    出版时间:2009-01
  • 所属分类:
  • 定价: ¥118.00元
    售价: ¥93.22元
  • 图书介质:
    按需印刷

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

Two top experts in topology, O.Ya. Viro and D.B. Fuchs, give an up-to-date account of research in central areas of topology and the theory of Lie groups. They cover homotopy, homology and cohomology as well as the theory of manifolds, Lie groups, Grassmannians and low-dimensional manifolds.
Their book will be used by graduate students and researchers in mathematics and mathematical physics.
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • I. Introduction to Homotopy Theory
    Chapter 1 Basic Concepts
    §1. Terminology and Notations
    1.1. Set Theory
    1.2. Logical Equivalence
    1.3. Topological Spaces
    1.4. Operations on Topological Spaces
    1.5. Operations on Pointed Spaces
    §2. Homotopy
    2.1. Homotopies
    2.2. Paths
    2.3. Homotopy as a Path
    2.4. HomotopyEquivalence
    2.5. Retractions
    2.6. Deformation Retractions
    2.7. Relative Homotopies
    2.8. k-connectedness
    2.9. Borsuk Pairs
    2.10. CNRS Spaces
    2.11. Homotopy Properties of Topological Constructions.
    2.12. Natural Group Structures on Sets of Homotopy Classes
    §3. Homotopy Groups
    3.1. Absolute Homotopy Groups
    3.2. Digression: Local Systems
    3.3. Local Systems of Homotopy Groups of a Topological Space
    3.4. Relative Homotopy Groups
    3.5. The Homotopy Sequence of a Pair
    3.6. Splitting
    3.7. The Homotopy Sequence of a Triple
    Chapter 2. Bundle Techniques
    §4. Bundles
    4.1. General Definitions
    4.2. Locally Trivial Bundles
    4.3. Serre Bundles
    4.4. Bundles of Spaces of Maps
    §5. Bundles and Homotopy Groups
    5.1. The Local System of Homotopy Groups of the Fibres of a Serre Bundle
    5.2. The Homotopy Sequence of a Serre Bundle
    5.3. Important Special Cases
    §6. The Theory of Coverings
    6.1. Coverings
    6.2. The Group of a Covering
    6.3. Hierarchies of Coverings
    6.4. The Existence of Coverings
    6.5. Automorphisms of a Covering
    6.6. Regular Coverings
    6.7. Covering Maps
    Chapter 3 Cellular Techniques
    §7. Cellular Spaces
    7.1. Basic Concepts
    7.2. Gluing of Cellular Spaces from Balls
    7.3. Examples of Cellular Decompositions
    7.4. Topological Properties of Cellular Spaces
    7.5. Cellular Constructions
    §8. Simplicia1 Spaces
    8.1. Basic Concepts
    8.2. Simplicia1 Schemes
    8.3. Simplicia1 Constructions
    8.4. Stars, Links, Regular Neighbourhoods
    8.5. Simplicia1 Approximation of a Continuous Map
    §9. Cellular Approximation of Maps and Spaces
    9.1. Cellular Approximation of a Continuous Map
    9.2. Cellular k-connected Pairs
    9.3. Simplicia1 Approximation of Cellular Spaces
    9.4. Weak Homotopy Equivalence
    9.5. Cellular Approximation to Topological Spaces
    9.6. The Covering Homotopy Theorem
    Chapter 4 The Simplest Calculations
    §10. The Homotopy Groups of Spheres and Classical Manifolds
    10.1. Suspension in the Homotopy Groups of Spheres
    10.2. The Simplest Homotopy Groups of Spheres
    10.3. The Composition Product
    10.4. Homotopy Groups of Spheres
    10.5. Homotopy Groups of Projective Spaces and Lens Spaces
    10.6. Homotopy Groups of the Classical Groups
    10.7. Homotopy Groups of Stiefel Manifolds and Spaces
    10.8. Homotopy Groups of Grassmann Manifolds and Spaces
    §11. Application of Cellular Techniques
    11.1. Homotopy Groups of a 1-dimensional Cellular Space
    11.2. The Effect of Attaching Balls
    11.3. The Fundamental Group of a Cellular Space
    11.4. Homotopy Groups of Compact Surfaces
    11.5. Homotopy Groups of Bouquets
    11.6. Homotopy Groups of a k-connected Cellular Pair
    11.7. Spaces with Given Homotopy Groups
    §12. Appendix
    12.1. The Whitehead Product
    12.2. The Homotopy Sequence of a Triad
    12.3. Homotopy Excision, Quotient and Suspension Theorems
    II. Homology and Cohomology
    Chapter 1 Additive Theory
    §1. Algebraic Preparation
    1.1. Complexes and Their Homology
    1.2. Maps and Homotopies
    1.3. Homology sequences
    1.4. The Euler characteristic and the Lefschetz number
    1.5. Change of coefficients
    1.6. Tensor products of complexes and the Kiinneth formula
    §2. General singular homology theory
    2.1. Basic definitions
    2.2. The simplest calculations
    2.3. Natural transformations;refinement and approximation
    2.4. Excision,factorization,suspension
    2.5. Addition theorems
    2.6. Dependence on the coefficients
    §3. Homology of cellular spaces
    3.1. The cellular complex
    3.2. Interrelations with the singular complex
    3.3. The simplicia] case
    3.4. Examples of calculations
    3.5. Other applications
    §4. Homology and homotopy
    4.1. Weak homotopy equivalence and homology
    4.2. The Hurewicz theorems
    4.3. The theorems of Poincare and Hopf
    4.4. Whitehead's theorem
    4.5. Some instructive examples
    §5. Homology and fixed points
    5.1. Lefschetz's theorem
    5.2. Smith theory
    §6. Other homology and cohomology theories
    6.1. The Eilenberg-Steenrod axioms
    6.2. An alternative construction of the Eilenberg-Steemod homology and cohomology theory:the Aleksandrov-Cech theory
    6.3. Extraordinary theories
    6.4. Homology and cohomology with local coefficients
    6.5. Cohomology with coefficients in a sheaf
    6.6. Conclusion
    Chapter 2 Multiplicative theory
    §7. Products
    7.1. Introduction
    7.2. Direct construction of the U-product
    7.3. Application:the Hopf invariant
    7.4. Other products
    §8. Homology and manifolds
    8.1. Introduction
    8.2. The fundamental class
    8.3. The Poincar6 isomorphisms
    8.4. Intersection numbers and Poincart duality
    8.5. Linking coefficients
    8.6. Inverse homomorphisms
    8.7. The relation with the U-product
    8.8. Generalizations of the Poincar6 isomorphism and duality
    Chapter 3 Obstructions. characteristic classes and cohomology operations
    §9. Obstructions
    9.1. Obstructions to extending a continuous map
    9.2. The relative case
    9.3. Application: cohomology and maps into K(π,n) spaces
    9.4. Another application: Hopf s theorems
    9.5. Obstructions to the extension of sections
    §10. Characteristic classes of vector bundles
    10.1. Vector bundles
    10.2. Associated bundles and characteristic classes
    10.3. Characteristic classes and classifying spaces
    10.4. The most important properties of Stiefel-Whitney classes
    10.5. The most important properties of Euler. Chern. and Pontryagin classes
    10.6. Characteristic classes in the topology of smooth manifolds
    §11. Steenrod squares
    11.1. General theory of cohomology operations
    11.2. Steenrod squares and their properties
    11.3. Steenrod squares and Stiefel-Whitney classes
    11.4. Secondary obstructions
    11.5. The non-existence of spheroids with odd Hopf invariant
    References
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证