0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 运筹学/控制论 > 无约束最优化与非线性方程的数值方法

相同语种的商品

浏览历史

无约束最优化与非线性方程的数值方法


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
无约束最优化与非线性方程的数值方法
  • 书号:9787030234827
    作者:J. E. Dennis, Jr.
  • 外文书名:Numerical Methods for Unconstrained Optimization and Nonlinear Equations
  • 装帧:平装
    开本:B5
  • 页数:400
    字数:476000
    语种:英文
  • 出版社:科学出版社
    出版时间:2009-01
  • 所属分类:
  • 定价: ¥168.00元
    售价: ¥132.72元
  • 图书介质:
    按需印刷

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

“...For anyone who needs to go beyond the basic treatment of numerical methods for nonlinear equations given in any number of standard numerical texts this book is ideal.”
—Duncan Lawson, Mathematics Today, August 1998.
“With 206 exercises aiming to illustrate and develop the ideas in the text and 134 bibliographical references, this very well written and organized monograph provides the basic infiormation needed to understand both the theory and the practice of the methods for solving problems related to unconstrained optimization and systems of nonlinear equations.”
—Alfred Braier, Buletinul Institutului Politehnic Din Iasi, Tomul XLII(XLVI), Fasc. 3-4, 1996.
“This book is a standard for a complete description of the methods for unconstrained optimization and the solution of nonlinear equations.
...this republication is most welcome and this volume should be in every library. Of course, there exist more recent books on the topics and somebody interested in the subject cannot be sati~sfied by looking only at this book. However, it contains much quite-well-presented material and I recommend reading it before going to other publications.”
—Claude Brejinski, Numerical Algorithms, 13, October 1996.
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • PREFACE TO THE CLASSICS EDITION
    PREFACE
    1 INTRODUCTION
    1.1 Problems to be considered
    1.2 Characteristics of "real-world" problems
    1.3 Finite-precision arithmetic and measurement of error
    1.4 Exercises
    2 NONLINEAR PROBLEMS IN ONE VARIABLE
    2.1 What is not possible
    2.2 Newton's method for solving one equation in one unknown
    2.3 Convergence of sequences of real numbers
    2.4 Convergence of Newton's method
    2.5 Globally convergent methods for solving one equation in one unknown
    2.6 Methods when derivatives are unavailable
    2.7 Minimization of a function of one variable
    2.8 Exercises
    3 NUMERICAL LINEAR ALGEBRA BACKGROUND
    3.1 Vector and matrix norms and orthogonality
    3.2 Solving systems of linear equations-matrix factorizations
    3.3 Errors in solving linear systems
    3.4 Updating matrix factorizations
    3.5 Eigenvalues and positive definiteness
    3.6 Linear least squares
    3.7 Exercises
    4 MULTIVARIABLE CALCULUS BACKGROUND
    4.1 Derivatives and multivariable models
    4.2 Multivariable finite-difference derivatives
    4.3 Necessary and sufficient conditions for unconstrained minimization
    4.4 Exercises
    5 NEWTON'S METHOD FOR NONLINEAR EQUATIONS AND UNCONSTRAINED MINIMIZATION
    5.1 Newton's method for systems of nonlinear equations
    5.2 Local convergence of Newton's method
    5.3 The Kantorovich and contractive mapping theorems
    5.4 Finite-difference derivative methods for systems of nonlinear equations
    5.5 Newton's method for unconstrained minimization
    5.6 Finite-difference derivative methods for unconstrained minimization
    5.7 Exercises
    6 GLOBALLY CONVERGENT MODIFICATIONS OF NEWTON'S METHOD
    6.1 The quasi-Newton framework
    6.2 Descent directions
    6.3 Line searches
    6.3.1 Convergence results for properly chosen steps
    6.3.2 Step selection by backtracking
    6.4 The model-trust region approach
    6.4.1 The locally constrained optimal ("hook") step
    6.4.2 The double dogleg step
    6.4.3 Updating the trust region
    6.5 Global methods for systems of nonlinear equations
    6.6 Exercises
    7 STOPPING, SCALING, AND TESTING
    7.1 Scaling
    7.1 Scaling
    7.3 Testing
    7.4 Exercises
    8 SECANT METHODS FOR SYSTEMS OF NONLINEAR EQUATIONS
    8.1 Broyden's method
    8.2 Local convergence analysis of Broyden's method
    8.3 Implementation of quasi-Newton algorithms using Broyden's update
    8.4 Other secant updates for nonlinear equations
    8.5 Exercises
    9 SECANT METHODS FOR UNCONSTRAINED MINIMIZATION
    9.1 The symmetric secant update of Powell
    9.2 Symmetric positive definite secant updates
    9.3 Local convergence of positive definite secant methods
    9.4 Implementation of quasi-Newton algorithms using the positive definite secant update
    9.5 Another convergence result for the positive definite secant method
    9.6 Other secant updates for unconstrained minimization
    9.7 Exercises
    10 NONLINEAR LEAST SQUARES
    10.1 The nonlinear least-squares problem
    10.2 Gauss-Newton-type methods
    10.3 Full Newton-type methods
    10.4 Other considerations in solving nonlinear least-squares problems
    10.5 Exercise
    11 METHODS FOR PROBLEMS WITH SPECIAL STRUCTURE
    11.1 The sparse finite-difference Newton method
    11.2 Sparse secant methods
    11.3 Deriving least-change secant updates
    11.4 Analyzing least-change secant methods
    11.5 Exercises
    A APPENDIX: A MODULAR SYSTEM OF ALGORITHMS FOR UNCONSTRAINED MINIMIZATION AND NONLINEAR EQUATIONS(by Robert Schnabel)
    B APPENDIX: TEST PROBLEMS (by Robert Schnabel)
    REFERENCES
    AUTHOR INDEX
    SUBJECT INDEX
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证