In order to help our readers fully understand the history, ideas, theories, improvement, simulation and features of video parsing algorithm, this book gives a detailed introduction to more than 50 basic theories of operators, descriptors, filtration, transformation, methods and so on concerning video parsing algorithm, and expounds the means for improvement and experimental simulation of video parsing algorithm. It systematically summarizes both its strong points and shortcomings, and provides sets of source codes of experimental simulation and video image libraries. Please find www.kedachang.com for related materials.
样章试读
目录
CONTENTS PREFACE Chapter 1 Video Image Enhancement 1 1.1 Recursive Median Filter 1 References 2 1.2 Least Squares Filter 2 1.3 Homomorphic Filter 7 References 10 1.4 Bilateral Filter 10 References 14 1.5 Guided Filter 14 References 16 1.6 Lateral Inhibition Network 16 References 22 1.7 Mathematical Morphology 22 References 30 Chapter 2 Video Image Segmentation 31 2.1 Double-Peak Histogram 31 References 34 2.2 Watershed 34 References 36 2.3 Regional Split-and-Merge 37 References 38 2.4 OTSU 38 References 40 2.5 Maximum 2D Entropy 41 References 47 2.6 2D Cross-Entropy 48 References 55 Chapter 3 Key Point Detection 56 3.1 Moravec 56 References 58 3.2 Forstner 58 References 60 3.3 Harris 60 References 64 3.4 SUSAN 64 References 69 3.5 CSS 69 References 74 3.6 FAST 74 References 77 3.7 DoG 77 References 80 3.8 LoG 80 References 83 Chapter 4 Visual Feature Descriptors 84 4.1 Hu Moment 84 References 86 4.2 Legendre Moments 87 4.3 Fourier Descriptors 89 References 91 4.4 Haar 91 References 96 4.5 HOG 96 References 98 4.6 LBP 99 References 103 4.7 SIFT 103 References 112 4.8 SURF 112 References 116 Chapter 5 Transform and Dimension Reduction 117 5.1 K-L Transform 117 References 119 5.2 DCT Transform 120 References 126 5.3 Gabor Transform 126 References 129 5.4 Wavelet Transform 129 References 135 5.5 Haar Transform 136 References 140 5.6 Hough Transform 140 References 146 5.7 LPT Transform 146 References 150 5.8 PCA 150 References 154 5.9 LDA 154 References 157 Chapter 6 Clustering and Classification 158 6.1 Measure Methods of Similarity 158 6.2 K-Means Clustering 162 References 165 6.3 Bayesian Methods 165 References 168 6.4 Adaptive Boosting 168 References 174 6.5 SVM 174 References 181 Chapter 7 Motion Detection and Target Tracking 182 7.1 Background Subtraction 182 References 189 7.2 Temporal Difference 189 References 194 7.3 Optical Flow 194 References 202 7.4 Kalman Filtering 202 References 207 7.5 Mean Shift 207 References 211 7.6 CamShift Method 211 References 213