0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 本科教材 > 理学 > 0701 数学 > 数值分析引论(英文版)(Introduction to Numerical Analysis)

相同作者的商品

相同语种的商品

浏览历史

数值分析引论(英文版)(Introduction to Numerical Analysis)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
数值分析引论(英文版)(Introduction to Numerical Analysis)
  • 书号:9787030596239
    作者:王正盛
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:9,207
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:1900-01-01
  • 所属分类:
  • 定价: ¥59.00元
    售价: ¥46.61元
  • 图书介质:
    按需印刷

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Chapter 1 Introduction 1
    1.1 Numerical Analysis: What and Why? 1
    1.2 Review of Calculus 5
    1.3 Computer Arithmetic and Error Analysis 8
    1.4 Algorithms and Convergence 14
    1.5 Numerical Software 18
    1.6 Reading: Golub and Moler 19
    1.7 Self Assessment Exercises 21
    Chapter 2 Solution of Nonlinear Equations 22
    2.1 Introduction 22
    2.2 Bisection Method 24
    2.3 Fixed Point Iteration 29
    2.4 Newton's Method 33
    2.5 Secant Method 38
    2.6 Survey of Methods and Software 41
    2.7 Reading: Newton 43
    2.8 Self Assessment Exercises 44
    Chapter 3 Solution of Linear Systems 46
    3.1 Introduction 46
    3.2 Gaussian Elimination Method 49
    3.2.1 Gaussian Elimination 49
    3.2.2 Gaussian Elimination Algorithm 52
    3.2.3 Partial Pivoting 56
    3.2.4 Scaled Partial Pivoting 59
    3.3 LU Factorization 60
    3.4 Vector and Matrix Norms 67
    3.5 Error of Calculated Solution 70
    3.5.1 Error of Calculated Solution 70
    3.5.2 A Practical Error Bound 72
    3.6 Residual Correction Method 74
    3.7 Jacobi Iterative Method 75
    3.7.1 Jacobi Iteration 75
    3.7.2 Convergence of the Jacobi Method 77
    3.8 Gauss-Seidel Iterative Method 80
    3.8.1 Gauss-Seidel Iteration 80
    3.8.2 Termination of the Iteration 82
    3.9 Survey of Methods and Software 84
    3.9.1 MATLAB Functions 84
    3.9.2 Comparison of Direct and Iterative Methods 84
    3.9.3 Some Modern Methods and Software 84
    3.10 Reading: Gauss, Jacobi and Seidel 85
    3.11 Self Assessment Exercises 88
    Chapter 4 Polynomial Interpolation and Curve Fitting 91
    4.1 Introduction 91
    4.2 Lagrange Form 92
    4.3 Newton's Divided Difference Formula 95
    4.4 Error of the Interpolating Polynomial 99
    4.5 Runge's Phenomenon 101
    4.6 Curve Fitting 103
    4.6.1 Overview 103
    4.6.2 Fitting a Straight Line 105
    4.6.3 Fitting Linear Forms 106
    4.6.4 Polynomial Fitting 107
    4.6.5 Fitting Exponential Functions 109
    4.7 Survey of Methods and Software 110
    4.8 Reading: Lagrange and Runge 112
    4.9 Self Assessment Exercises 114
    Chapter 5 Numerical Differentiation and Numerical Integration 115
    5.1 Introduction 115
    5.2 Numerical Differentiation 117
    5.3 Numerical Integration Based on Interpolation 127
    5.3.1 Integration via Polynomial Interpolation 128
    5.3.2 Trapezoid Rule 129
    5.3.3 Simpson's Rule 130
    5.4 Composite Trapezoid Rule 131
    5.5 Romberg Integration 132
    5.6 Reading: Cotes, Simpson and Romberg 140
    5.7 Self Assessment Exercises 143
    Chapter 6 Solution of Ordinary Differential Equations 145
    6.1 Introduction 145
    6.2 Euler's Method 148
    6.3 Local and Global Truncation Errors 152
    6.4 Taylor's Methods 154
    6.5 Runge-Kutta Methods 156
    6.6 Stability 163
    6.7 First Order Systems 166
    6.8 Reading: Euler, Kutta and Taylor 168
    6.9 Self Assessment Exercises 171
    Reference 173
    Appendix A Introduction to MATLAB 175
    A.1 A Glance of MATLAB 175
    A.2 Starting Up 177
    A.3 MATLAB as a Calculator 178
    A.4 Plotting 187
    A.5 Programming 191
    A.6 Commonly Used Commands Summary 198
    Appendix B Answers for Selected Exercises 202
    Appendix C Common Mathematical Knowledge 205
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证