0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 工程技术 > 能源与动力工程 > 油气地震勘探数据重建与去噪:从稀疏表示到深度学习

相同作者的商品

相同语种的商品

浏览历史

油气地震勘探数据重建与去噪:从稀疏表示到深度学习


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
油气地震勘探数据重建与去噪:从稀疏表示到深度学习
  • 书号:9787030749888
    作者:张岩
  • 外文书名:
  • 装帧:平装
    开本:16
  • 页数:219
    字数:3000000
    语种:zh-Hans
  • 出版社:科学出版社
    出版时间:2023-04-01
  • 所属分类:
  • 定价: ¥128.00元
    售价: ¥101.12元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书系统介绍了地震信号去噪与重建基本理论与方法,以及稀疏表示、压缩感知、深度学习等技术在地震数据重建与去噪中的应用理论、应用方法与主要原则等内容。全书共10章,分成五部分。第一部分(第1章和第2章)阐述地震数据重建、去噪的研究背景及意义,简述稀疏表示基本原理、多尺度几何分析、字典学习,以及压缩感知的基本理论与应用框架;简述深度学习的基本原理、地震数据重建与去噪数据样本组织方法,包括理论引导数据科学正演生成模拟样本的过程,以及实际样本增广的方法。第二部分(第3章和第4章)在压缩感知框架下,分别基于曲波、波原子稀疏表示重建地震数据,保留地震数据主要特征。第三部分(第5章和第6章)分别基于结构聚类、多道相似组局部超完备字典稀疏表示,压制地震数据随机噪声,保持地震数据细节特征。第四部分(第7章和第8章)分别基于联合傅里叶域、小波域特征约束的深度学习重建地震数据,加强数据纹理细节信息。第五部分(第9章和第10章)分别基于联合傅里叶域约束、两阶段神经网络的深度学习压制地震数据噪声,增强网络模型的泛化能力。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 目录
    “博士后文库”序言
    前言
    第1章 绪论 1
    1.1 本书的写作背景 1
    1.2 地震数据重建研究现状 3
    1.3 地震数据随机噪声压制研究现状 5
    1.4 稀疏表示研究现状 6
    1.5 深度学习研究现状 9
    1.6 本书内容安排 12
    参考文献 13
    第2章 相关基本理论 18
    2.1 稀疏表示 18
    2.1.1 稀疏约束模型 18
    2.1.2 多尺度几何分析稀疏表示 20
    2.1.3 超完备字典学习稀疏表示 22
    2.2 压缩感知 24
    2.3 深度学习 27
    2.3.1 卷积神经网络原理 27
    2.3.2 卷积神经网络传播算法 32
    2.3.3 基于深度学习的地震数据处理 35
    2.4 样本组织 37
    2.4.1 模拟地震数据组织 37
    2.4.2 实际地震数据组织 39
    2.5 本章小结 41
    参考文献 41
    第3章 基于曲波稀疏表示的数据重建 42
    3.1 压缩感知数据重建模型分析 43
    3.2 地震数据曲波域稀疏表示 45
    3.2.1 地震数据曲波域分析 45
    3.2.2 曲波域多尺度相关性 47
    3.3 地震数据采样 50
    3.3.1 地震数据观测矩阵构造 51
    3.3.2 最大间距控制的随机采样 55
    3.4 地震数据压缩感知重建算法 57
    3.4.1 贝叶斯估计阈值函数 57
    3.4.2 算法实现步骤与流程 59
    3.5 实验结果及分析 61
    3.5.1 合成地震数据实验 61
    3.5.2 标准地震模型实验 63
    3.5.3 实际地震数据实验 68
    3.6 本章小结 70
    参考文献 70
    第4章 基于波原子稀疏表示的数据重建 72
    4.1 波原子域稀疏表示 73
    4.1.1 波原子变换 73
    4.1.2 地震数据波原子域稀疏表示 75
    4.2 波原子域压缩感知重建算法 76
    4.2.1 循环平移技术 76
    4.2.2 指数阈值收缩模型 77
    4.2.3 算法实现步骤与流程 79
    4.3 实验结果与分析 80
    4.3.1 合成地震数据实验 80
    4.3.2 标准地震模型实验 84
    4.3.3 实际地震数据实验 87
    4.4 本章小结 90
    参考文献 90
    第5章 基于结构聚类字典的数据去噪 92
    5.1 基于字典学习的噪声压制模型 94
    5.1.1 地震数据稀疏表示 94
    5.1.2 地震数据噪声压制 95
    5.1.3 全局字典学习方法 96
    5.1.4 全局字典稀疏表示 98
    5.2 地震数据块结构聚类方法 99
    5.2.1 结构聚类步骤 99
    5.2.2 相似度计算方法 100
    5.3 基于结构聚类的去噪算法 102
    5.3.1 结构聚类局部字典学习 102
    5.3.2 模型求解 103
    5.3.3 算法实现步骤与流程 105
    5.4 实验结果及分析 106
    5.4.1 合成地震数据实验 107
    5.4.2 标准地震模型实验 110
    5.4.3 实际地震数据实验 113
    5.5 本章小结 116
    参考文献 117
    第6章 基于多道相似组字典的数据去噪 119
    6.1 多道相似组模型 120
    6.1.1 波形互相关系数原理 120
    6.1.2 多道相似组的构造 120
    6.2 基于多道相似组噪声压制算法 121
    6.2.1 多道相似组字典噪声压制 122
    6.2.2 局部自适应字典学习 122
    6.2.3 算法实现步骤与流程 123
    6.3 实验结果及分析 125
    6.3.1 合成地震数据实验 125
    6.3.2 标准地震模型实验 128
    6.3.3 实际地震数据实验 133
    6.4 本章小结 136
    参考文献 137
    第7章 基于傅里叶域联合学习的数据重建 138
    7.1 数据重建模型建立 139
    7.1.1 欠采样地震数据 139
    7.1.2 基于傅里叶变换的地震数据规则化 140
    7.2 卷积神经网络构建 141
    7.2.1 网络架构 141
    7.2.2 损失函数设定 142
    7.3 实验结果与分析 143
    7.3.1 评价标准 143
    7.3.2 标准地震模型实验 143
    7.3.3 实际数据重建实验 153
    7.4 本章小结 154
    参考文献 154
    第8章 基于小波域联合学习的数据重建 156
    8.1 方法原理 156
    8.1.1 地震数据重建模型 156
    8.1.2 基于小波变换的规则化 157
    8.1.3 小波域特征提取 158
    8.1.4 联合小波域深度学习模型 160
    8.1.5 联合损失函数 161
    8.2 标准地震模型实验 162
    8.2.1 参数设置 162
    8.2.2 网络模型测试 162
    8.2.3 纹理细节保持效果 165
    8.2.4 算法对比 166
    8.3 实际地震数据实验 172
    8.4 本章小结 176
    参考文献 176
    第9章 基于时频联合学习的数据去噪 178
    9.1 联合学习噪声压制模型 178
    9.1.1 网络模型结构 178
    9.1.2 联合损失函数的构造 180
    9.1.3 扩充卷积的构造 180
    9.2 标准模型实验 181
    9.2.1 网络结构的分析 181
    9.2.2 算法对比实验分析 189
    9.2.3 不同强度噪声压制分析 193
    9.3 实际资料处理 193
    9.3.1 数据训练 193
    9.3.2 数据测试 194
    9.4 本章小结 199
    参考文献 200
    第10章 基于两阶段卷积网络的数据去噪 201
    10.1 方法原理 202
    10.1.1 噪声压制模型 202
    10.1.2 网络结构设计 202
    10.2 去噪影响因素分析 204
    10.2.1 子网结构的分析与验证 204
    10.2.2 联合损失函数设计 206
    10.2.3 特征融合的作用 208
    10.2.4 残差学习的作用 210
    10.3 标准地震模型实验 211
    10.3.1 算法对比实验分析 211
    10.3.2 不同强度噪声压制分析 214
    10.4 实际地震数据实验 214
    10.5 本章小结 218
    参考文献 218
    编后记 220
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证