0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: > 集成式工艺规划与车间调度方法

相同语种的商品

浏览历史

集成式工艺规划与车间调度方法


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
集成式工艺规划与车间调度方法
  • 书号:9787030756138
    作者:李新宇,高亮
  • 外文书名:
  • 装帧:圆脊精装
    开本:16
  • 页数:276
    字数:603000
    语种:zh-Hans
  • 出版社:科学出版社
    出版时间:2023-06-01
  • 所属分类:
  • 定价: ¥256.00元
    售价: ¥202.24元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书总结了作者在集成式工艺规划与车间调度问题上的研究成果,共包含5个部分:第一部分重点对工艺规划、车间调度、柔性作业车间调度以及集成式工艺规划与车间调度等问题的最新研究成果进行了系统的综述;第二部分重点针对单目标的集成式工艺规划与车间调度问题的理论与方法进行系统介绍,提出了该问题的数学模型以及高效优化方法;第三部分重点针对多目标的集成式工艺规划与车间调度问题的理论与方法进行系统介绍,提出了该问题的多目标数学模型以及高效优化及决策方法;第四部分重点针对不确定及动态环境下的集成式工艺规划与车间调度问题的理论与方法进行系统介绍,提出了该问题的数学模型、处理策略以及高效优化方法;第五部分重点针对集成式工艺规划与车间调度问题研究成果的应用进行系统介绍,设计并开发了针对该问题的软件系统,并介绍了该系统的在相关生产车间的应用情况。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    1 Introduction for Integrated Process Planning and Scheduling 1
    1.1 Process Planning 1
    1.2 Shop Scheduling 3
    1.2.1 Problem Statement 3
    1.2.2 Problem Properties 4
    1.2.3 Literature Review 5
    1.3 Integrated Process Planning and Shop Scheduling 6
    References 1
    2.Review for Flexible .Job Shop Scheduling 7
    2.1 Introduction 17
    2.2 Problem Description 8
    2.3 The Methods for FISP 18
    2.3.1 Exact Algorithms 20
    2.3.2 Heuristics 22
    2.3.3 Meta-Heuristics 24
    2.4 Real-World Applications 33
    2.5 Development Trends and Future Research Opportunities 33
    2.5.1 Development Trends 33
    2.5.2 Future Research Opportunities 34
    References 37
    3 Review for Integrated Process Planning and Scheduling 47
    3.1 IPPS in Support of Distributed and Collaborative Manufacturing 47
    3.2 Integration Model of IPPS 48
    3.2.1 Non-I ,inear Process Planning 48
    3.2.2 Closed-Loop Process Planning 49
    3.2.3 Distributed Process Planning 50
    3.2.4 Comparison of Integration Models 51
    3.3 Implementation Approaches of IPPS 52
    3.3.1 Agent- Based Approaches of IPPS 52
    3.3.2 Petri-Net-Based Approaches of IPPS 54
    3.3.3 Algorithm-Based Approaches of IPPS 54
    3.3.4 Critique of Curent Implementation Approachs 55
    References 56
    4 Improved Genetic Programming for Process Planning 61
    4.1 Introduction
    4.2 Flexible Process Planning 62
    4.2.1 Flexible Process Plans 62
    4.2.2 Representation of Flexible Process Plans 64
    4.2.3 Mathematical Model of Flexible Process Planning 64
    4.3 Brief Review of GP 67
    4.4 GP for Flexible Process Planning 68
    4.4.1 The Flowchart of Proposed Metbod 68
    4.4.2 Convert Network to Tree, Encoding, and Decoding 69
    4.4.3 Initial Population and Fitness Evaluation 71
    4.4.4 GP Operators 72
    4.5 Case Studies and Discussion 74
    4.5.1 Implementation and Testing 74
    4.5.2 Comparison with GA 75
    4.6 Conclusion 78
    References 78
    5 An Efficient Modified Particle Swarm Optimization Algorithm for Process Planning 81
    5.1 Introduction 81
    5.2 Related Work 82
    5.2.1 Process Planning 82
    5.2.2 PSO with Its Applications 84
    5.3 Problem Formulation 84
    5.3.1 Flexible Process Plans 84
    5.3.2 Mathematical Model of Process Planning Problem 85
    5.4 Modified PSO for Process Planning 86
    5.4.1 Modified PSO Model 86
    5.4.2 Modified PSO for Process Planning 88
    5.5 Experimental Studies and Discussions 94
    5.5.1 Case Studies and Results 94
    5.5.2 Discussion 102
    5.6 Conclusions and Future Research Studics 104
    References 104
    6 A Hybrid Algorithm for Job Shop Scheduling Problem 107
    6.1 Introduction 107
    6.2 Problem Formulation 110
    6.3 Proposed Hybrid Algorithm for JSP 112
    6.3.1 Description of the Proposed Hybrid Algorithm 112
    6.3.2 Encoding and Decoding Scheme 114
    6.3.3 Updating Srace 116
    6.3.4 Local Search of the Particle 116
    6.4 The Neighborthood Structure Evaluation Method Based on Logistic Model 117
    6.4.1 The Logistic Model 117
    6.4.2 Defining Neighbothood Structures 118
    6.4.3 The Evaluation Method Based on Logistic Model 119
    6.5 Experiments and Discussion 121
    6.5.1 The Search Ability of VNS 121
    6.5.2 Benchmark Experiments 122
    6.5.3 Convergence Analysis of HPV 124
    6.5.4 Discussion 128
    6.6 Conclusions and Future Works 128
    References 129
    7 An Efctive Genetic Algorithm for FJSP 133
    7.1 Introduction 133
    7.2 Problem Formulation 134
    7.3 L ,iterature Review 135
    7.4 An Effective GA for FISP 137
    7.4.1 Representation 137
    7.4.2 Decoding the MSOS Chromosome to a Feasibleand Active Schedule 139
    7.4.3 Initial Population 140
    7.4.4 Selection Operator 143
    7.4.5 Crossover Operator 143
    7.4.6 Mutation Operator 145
    7.4.7 Framework of the Effective GA 146
    7.5 Computational Results 147
    7.6 Conclusions and Future Study 149
    References 153
    8 An Elfective Collaborative Evolutionary Algorithm for FJSP 157
    8.1 Initroduction 157
    8.2 Problem Formulation 158
    Proposed MSCEA for FISP 158
    8.3.1 The Optimization Strategy of MSCEA 158
    8.3.2 Encoding 159
    8.3.3 Initial Population and Fitness Evaluation 160
    8.3.4 Genetic Operators 160
    8.3.5 Terminate Criteria 161
    8.3.6 Framework of MSCEA 161
    8.4 Experimental Studies 163
    8.5 Conclusions 163
    References 165
    9 Mathematical Modeling and Evolutionary Algorithum-Based Approach for IPPS 167
    9.1 Introduction 167
    9.2 Problem Formulation and Mathematical Modeling 168
    9.2.1 Problem Formulation 168
    9.2.2 Mathematical Modeling 169
    9.3 Evolutionary Algorithm-Based Approach for IPPS 173
    9.3.1 Representation 173
    9.3.2 Initialization and Fitness Evaluation 174
    9.3.3 Genetic Operators .174
    9.4 Experimental Studies and Discussions 178
    9.4.1 Example Problems and Experimental Results 178
    9.4.2 Discussions 187
    9.5 Conclusion.187
    References 188
    10 An Agent-Based Approach for IPPS 191
    10.1 Literature Survey 191
    10.2 Problem Formulation 192
    10.3 Proposed Agent-Based Approach for IPPS 195
    10.3.1 MAS Architecture 195
    10.3.2 Agents Description 195
    10.4.Implementation and Experimental Studies 200
    10.4.1 System Implenentaion 200
    10.42 Experimental Results and Discussion 202
    10.4.3 Discussion 205
    10.5 Conclusion 205
    References 207
    11 A Modified Genetic Algorithm Based Approach for IPPS 209
    11.1 Integration Model of IPPS 209
    11.2 Representations for Process Plans and Schedules 210
    11.3 Modified GA-Based Optimization Approach.212
    11.3.1 Flowchart of the Proposed Approach 212
    11.3.2 Genetic Components for Process Planning 213
    11.3.3 Genetic Components for Scheduling 217
    11.4 Experimental Studics and Discussion 223
    11.4.1 Test Problems and Experimental Results 223
    11.4.2 Comparison with Hierarchical Approach 231
    11.5 Discussion 232
    11.6 Conclusion
    References 232
    12 An Efective Hybrid Algorithm for IPPS 235
    12.1 Hybnd Algorithm Mode 235
    12.1.1 Traditionally Genetic Algorithm 235
    12.1.2 Local Search Strategy 235
    12.1.3.Hybrid Algorithm Model 236
    12.2 Hybrid Algorithm for IPPS 237
    12.2.1 Encoding and Decoding 237
    12.2.2 Initial Population and Fitness Evaluation 239
    12.2.3 Genetic Operators for IPPS .239
    12.3 Experimental Studies and Discussions 243
    12.3.1 Test Problems 243
    123.2 Experimental Results 244
    12.4 Discussion 245
    12.5 Conclusion 249
    References 249
    13 An Effective Hybrid Particle Swarm Optimization Algorithm for Multi-objective FJSP 251
    13.1 Introduction 251
    13.2 Problem Formulation.252
    13.3 Particle Swarm Optimization for FISP 255
    13.3.1 Traditional PSO Algorithn 255
    13.3.2 Tabu Search Strategy 256
    13.3.3 Hybrid PSO Algorithm Model 257
    13.3.4 Fitness Function 258
    13.3.5 Encoding Scheme 259
    13.3.6.Information Exchange 261
    13.4 Experimental Results 262
    13.4.1 Problem 4 x 5 262
    13.4.2 Problem 8 x 8 264
    13.4.3 Problem 10 x 10 264
    13.4.4.Problem 15 x 10 267
    13.5 Conclusions and Future Research 276
    References 276
    14 A Multi- objctive GA Based on Immune and EntropyPrinciple for FJSP 279
    14.1 Introduction 279
    14.2 Multi-objective Flexible Job Shop Scheduling Problem 281
    14.3 Basic Concepts of Multi-objective Optimization 283
    14.4 Handing MOFISP with MOGA Based on Immune and .Entropy Principle 283
    14.4.1 Fitness Assignment Scheme 283
    14.4.2 Immune and Entropy Principle 284
    14.4.3 Initialization 286
    14.4.4 Encoding and Decoding Scheme 286
    14.4.5 Selection Operator 287
    14.4.6 Crossover Operator 288
    14.4.7 Mutation Operator 289
    14.4.8 Main Algorithm 290
    14.5 Experimental Rcesults 290
    14.6 Conclusions 294
    References 300
    15 An Efective Genetic Algorithm for Multi-objective IPPSwith V arious Flexibilities in Process Planning 301
    15.1 Introduction 301
    15.2 Multi-objective IPPS Description 302
    15.2.1 IPPS Description 302
    15.2.2 Mli-objctive Optimizaion 304
    15.3 Proposed Genetic Algorithm for Multi objective IPPS 305
    15.3.1 Worktlow of the Proposed Algorithm 305
    15.3.2 Genetic Components for Process Planning 307
    15.3.3 Genetic Components for Scheduling 310
    15.3.4 Pareto Set Update Scheme 311
    15.4 Experimental Results and Discussions 312
    15.4.1 Experiment 1 312
    15.4.2.Experiment 2 315
    15.4.3 Discussions 316
    15.5 Conclusion and Future Works 321
    References 321
    16 Application of Game Theory-Based Hybrid Algorithm for Multi-objective IPPS 323
    16.1 Introduction 323
    16.2 Problem Formulation 325
    16.3.Game Theory Model of Muli-objective IPP 328
    16.3.1 Game Theory Model of Multi-objective Optimization Problem 328
    16.3.2 Nash Equilibrium and MOP 329
    16.3.3 Non-cooperative Game Theory for Multi- objective IPPS Proble 329
    16.4 Applications of the Proposed Algorithm on Multi-objective IPPS 330
    16.4.1 Workflow of the Proposed Algorthm 330
    16.4.2.Nash Equilibrium Solutions Algorithm for Multi-objective IPPS 331
    16.5 Experimental Results 335
    16.5.1 Problem 1 335
    16.5.2 Problem 2 336
    16.5.3 Conclusions 341
    References 342
    17 A Hybrid Intelligent Algorithm and Rescheduling Technique for Dynamnic JSP 345
    17.1 Introduction 345
    17.2 Statement of Dynamie JSPs 347
    17.2.1 The Proposed Mathematical Model 347
    17.2.2 The Reschedule Strategy 350
    17.2.3 Generate Real-Time Events 351
    17.3 The Proposed Rescheduling Technique for Dynamic JSPs 353
    17.3.1 The Rescheduling Technique in General 353
    17.3.2 The Hybrid GA and TS for Dynamic JSP 355
    17.4 Experiential Environments and Results 360
    17.4.1 Experimental Environments 361
    17.4.2 Results and Discussion 362
    17.5 Conclusions and Future Works 372
    18 A Hybrid Genetic Algorithm and Tabu Search for Multi-objective Dynamic JSP 377
    18.1 Introduction 377
    18.2 Literature Review 378
    18.3 The Multi-obective Dynamic Job Shop Scheduling 379
    18.4 The Proposed Method for Dynamic JSP 381
    18.4.1 The Flow Chart of the Proposed Method 381
    18.4.2 Simulator 383
    18.4.3 The Hybrid GA and TS for Dynamic JSP 384
    18.5 Experimental Design and Rsuls.387
    18.5.1 Experimental Design 387
    18.5.2 Results and Discussions 388
    18.6 Conclusions and Future Researches 400
    References .401
    19 GEP-Based Reactive Scheduling Policies for DynamicFJSP with Job Release Dates 405
    19.1 Introduction 405
    19.2 Problem Description 407
    19.3 Heuristic for DFISP 408
    19.4 GEP Based Reactive Scheduling Polices Constructing Approach 409
    19.4.1 Framework of GEP-Based Reactive Scheduling Policies Constructing Approach 409
    19.4.2 Define Element Sets 409
    19.4.3 Chromosome Representation 411
    19.4.4 Genetic Operators 413
    19.5 Experiments and Results 414
    19.5.1 GEP Parameter Settings 414
    19.5.2 Design of the Experiments 414
    19.5.3 Analysis of the Results 416
    19.6 Conclusion and Future Work 426
    References 427
    20 A Hybrid Genetic Algorithm with Variable Neighborhood Search for Dynamic IPPS 429
    20.1 Introduction 429
    20.2 Related Work 430
    20.3 Dynamic IPPS Problem Formulation 433
    20.3.1 Problem Definition 433
    20.3.2 Framework for DIPPS 433
    2.3.3 Dynamic IPPS Model 435
    20.4 Proposed Hybrid GAVNS for Dynamic IPPS 438
    20.4.1 Flowchart of Hybrid GAVNS 438
    20.4.2 GA for IPPS 438
    20.4.3 VNS for Local Search 440
    20.5 Experiments and Discussions 442
    20.5.1 Experiment 1 443
    20.5.2 Experiment 2 444
    20.5.3 Experiment 3 448
    20.5.4 Discussion 451
    20.6 Conclusion and Future Works 451
    References 452
    21 IPPS Simulation Prototype System 455
    21.1 Application Background Analysis 455
    21.2 System Architecture 456
    21.3 Implementation and Application 457
    21.4 Conclusion 461
    References 462
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证