0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: > 大型煤电基地生态损伤规律与生态安全协调机制研究

相同语种的商品

浏览历史

大型煤电基地生态损伤规律与生态安全协调机制研究


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
大型煤电基地生态损伤规律与生态安全协调机制研究
  • 书号:9787030748904
    作者:李全生等
  • 外文书名:
  • 装帧:圆脊精装
    开本:16
  • 页数:375
    字数:600000
    语种:zh-Hans
  • 出版社:科学出版社
    出版时间:2023-12-01
  • 所属分类:
  • 定价: ¥358.00元
    售价: ¥282.82元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

区域生态安全是大型煤电基地科学开发的重大难题,系统认知开发生态影响规律则是有效控制生态损伤和提升生态安全水平的科学与实践基础。本书针对大型煤电基地生态系统,围绕高强度开发生态(气、水、土、植等)损伤机理、生态累积效应和区域生态安全协调机制等科学问题,以东部草原区大型煤电基地为样区,提出以多尺度(区域-矿区-采区)生态影响观测体系、生态累积效应及生态健康评价指标体系、生态影响定量信息提取、生态安全风险评估等为核心的大型煤电基地生态影响分析方法;通过系统分析大型煤电基地高强度开发多要素生态响应,明确了大型煤电基地区域生态安全驱动力,揭示了地表生态累积时空效应和影响、矿区生态稳定性和景观生态健康维持、煤电基地和区域安全协调等机制;提出了大型煤电基地多尺度生态稳定性维持和区域生态安全调控方法,为科学认识大型煤电基地开发的生态损伤水平及“源头减损”重点,实现大型煤电基地开发与区域生态安全协同提供理论与方法。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • 目录

    前言
    第1章大型煤电基地高强度开发区域生态响应研究 1
    1.1大型煤电基地生态系统的界定及其对煤炭高强度开采的响应特征分析 1
    1.1.1东部草原区大型煤电基地的界定 1
    1.1.2大型煤电基地生态系统 4
    1.2东部草原区植被长时序变化研究与驱动力分析 6
    1.2.11985~2020年东部草原区植被绿度变化趋势研究 7
    1.2.2草原生态系统变化驱动力量化分析方法 13
    1.2.3基于NPP的典型草原区生态系统变化 15
    1.2.4东部草原区NPP变化的驱动力分析 20
    1.3东部草原区典型煤电基地生态环境要素的变化特征 25
    1.3.1空气 25
    1.3.2地形、地貌 28
    1.3.3地表植被变化 31
    1.3.4土壤质量 39
    1.3.5煤电基地高强度开发对草原生态影响时空累积特征 51
    第2章煤电基地开发/开采扰动下草原生态系统退化机理 56
    2.1煤电基地高强度开发对草原生态环境的影响机制 56
    2.1.1对草原生态环境的影响作用方式 56
    2.1.2对草原生态环境的影响途径 58
    2.1.3对草原生态环境的影响机制 58
    2.2煤电基地露天高强度开采对草原区土壤、植被的影响 60
    2.2.1土壤水分动态变化 60
    2.2.2土壤养分动态变化 65
    2.2.3露天开采过程中草原植物群落演替规律 66
    2.2.4露天开采下草原土壤-植被系统响应机理 69
    2.3井工矿高强度开采对草原区土壤、植被的影响 72
    2.3.1土壤水分动态变化 72
    2.3.2土壤养分动态变化 80
    2.3.3井工开采过程中草原植物群落演替规律 81
    2.3.4井工开采下草原土壤-植被系统响应机理 86
    第3章煤电基地高强度开采驱动下微生态系统变化规律 90
    3.1高强度开采驱动下草原植被时空变化规律 90
    3.1.1开采驱动下植被演替规律 90
    3.1.2开采驱动下草原土壤与植被养分循环变化过程 97
    3.1.3开采驱动下东部草原植被与土壤空间相关性 102
    3.2煤炭开采驱动下微生态演变规律 104
    3.2.1矿区微生态系统变化特征 104
    3.2.2矿区微生态系统功能结构变化与主要影响因子 108
    3.2.3矿区微生态系统功能结构特征 110
    3.2.4矿区微生态系统功能结构变化影响因子 112
    3.3开采驱动下微生态系统响应机理与生态累积效应 113
    3.3.1开采驱动下微生态系统响应机理 113
    3.3.2胁迫因素控制下微生态系统变化趋势 115
    3.3.3开采驱动下微生态系统生态累积效应 115
    第4章大型煤电基地开发区域生态累积效应评估 117
    4.1高强度开采区域土地累积影响确定 117
    4.1.1高强度开采区域土地累积影响边界的确定方法 117
    4.1.2高强度开采区域土地累积影响边界的提取结果 119
    4.1.3高强度开采区域土地累积效应变化趋势 125
    4.2高强度开采区域植被影响边界确定 135
    4.2.1高强度开采区域植被累积影响边界的确定方法 135
    4.2.2高强度开采区域植被累积影响边界的提取结果 135
    4.2.3高强度开采区域植被累积效应变化趋势 136
    4.3大型煤电基地开发区域的空气污染影响 142
    4.3.1高强度开采区域空气污染累积过程反演方法 142
    4.3.2高强度开采区域空气污染累积影响边界 143
    4.3.3高强度开采区域空气污染累积效应变化趋势 143
    4.4煤电基地开发生态累积效应评估与阈值模型分析方法 144
    4.4.1生态累积状态主要表征参数 144
    4.4.2煤电开发生态累积分析建模思路 147
    4.4.3生态损伤数学模型 148
    4.4.4激励-要素耦合算法 150
    第5章草原区大型露天矿高强度开采污染累积效应评估 152
    5.1典型污染场地特征与信息提取 152
    5.1.1大型露天矿区生态要素及开采响应特征 152
    5.1.2大型露天矿区典型污染场地类型及特征 156
    5.1.3高强度开采矿区典型污染场地信息提取 158
    5.2高强度开采场地-污染区域-矿区累积效应的变化检测 160
    5.2.1基于多尺度特征和主动学习的场地识别 160
    5.2.2基于改进UNet孪生网络的遥感影像污染区域检测 162
    5.2.3基于纹理转移的露天矿超分辨率重建的矿区场景 164
    5.3高强度开采的矿区生态累积效应评估 166
    5.3.1矿区生态累积范围确定 166
    5.3.2高强度开采污染区域的生态边缘效应 169
    5.3.3高强度开采污染区域的土壤生态累积质量 171
    5.3.4人类扰动与矿区场地生态质量变化关系 176
    5.3.5高强度开采污染区域(以重金属为例)的生态累积效应评估 178
    5.4草原区大型露天矿生态累积风险综合评估:以宝日希勒露天矿为例 180
    5.4.1自然灾害危害度 180
    5.4.2采矿活动的累积程度 181
    5.4.3牧业活动的影响程度 183
    5.4.41997~2019年宝日希勒露天矿综合生态累积风险评价 184
    5.4.5生态效应及阈值分析方法 185
    第6章煤炭开采驱动下地下水系统影响与累积效应评价 188
    6.1露天开采驱动下地下水系统影响累积效应评估模式 188
    6.1.1地下水系统影响累积效应的时空界定 189
    6.1.2地下水系统影响累积效应指示指标确定 191
    6.1.3露天开采驱动下地下水系统影响累积效应评估方法 193
    6.2露天开采影响区域地下水系统累积效应数据智能化采集 197
    6.2.1开采影响区域数据采集点布局 198
    6.2.2开采影响区域智能化数据采集系统 200
    6.2.3开采影响区域地下水系统变化累积效应数据采集 201
    6.3高强度开采驱动下地下水系统影响累积效应模型与边界识别 206
    6.3.1高强度开采驱动下露天矿地下水系统影响累积效应 206
    6.3.2高强度开采驱动下井工矿地下水系统影响累积效应 210
    6.3.3高强度开采地下水及其生态影响评价 211
    第7章东部草原区大型煤电基地景观生态影响研究 216
    7.1草原区大型煤电基地景观生态类型及空间格局划分 216
    7.1.1大型煤电基地主要景观类型及结构特征 216
    7.1.2大型煤电基地景观格局划分 218
    7.1.3大型煤电基地主要景观类型的功能作用 222
    7.2草原区高强度规模开采对草原景观生态的影响 223
    7.2.1高强度开采驱动下景观格局演变分析 223
    7.2.2高强度开采驱动下水土流失变化特征 230
    7.2.3草原煤电基地景观生态健康评价 233
    7.3草原区大型煤电基地牧矿交错带演化与生境特征 242
    7.3.1牧矿交错带区域界定与特征 242
    7.3.2牧矿交错带群落结构特征 243
    7.3.3牧矿交错带的生境特征 247
    第8章草原区煤电基地生态稳定性研究 256
    8.1大型煤电基地生态稳定性研究方法 256
    8.1.1生态稳定性概述 256
    8.1.2生态稳定性维持机制研究概述 258
    8.1.3基于生态系统的生态稳定性研究方法 259
    8.1.4基于景观格局的生态稳定性研究方法 261
    8.1.5大型煤电基地生态系统稳定性研究方法 263
    8.2大型煤电基地区域生态稳定性研究 266
    8.2.1大型煤电基地区域植被NDVI变化特征及驱动因素 266
    8.2.2东部草原区植被空间分异特征及其驱动因素 276
    8.2.3内蒙古草原植被根系特征及其群落构建空间分异研究 279
    8.3大型煤电基地矿区生态系统稳定性研究 283
    8.3.1排土场工程因素对排土场边坡稳定性的影响 283
    8.3.2排土场植被根系对排土场边坡稳定性的影响 287
    8.3.3植被因素与工程因素复合效应对边坡稳定性的影响 289
    8.4大型煤电基地生态稳定性评价 293
    8.4.1矿区排土场边坡稳定性 293
    8.4.2矿区排土场植物群落稳定性 294
    8.4.3大型煤电基地生态稳定性评价 297
    第9章大型煤电基地区域生态安全评价方法及控制因素 313
    9.1生态承载力与生态安全概述 313
    9.1.1生态承载力概述 313
    9.1.2生态安全概述 317
    9.2基于生态承载力的生态安全评价方法 321
    9.2.1排土场生态安全评价理论基础 321
    9.2.2生态安全评价指标体系构建 321
    9.2.3生态安全评价方法 323
    9.2.4评价指标体系运行 324
    9.3大型煤电基地区域生态安全评价 325
    9.3.1大型煤电基地矿区排土场尺度生态安全评价 325
    9.3.2大型煤电基地城矿尺度生态安全评价 331
    9.3.3大型煤电基地区域尺度生态安全评价 343
    第10章大型煤电基地开发区域生态安全监测与风险评估 347
    10.1草原区大型煤电基地开发生态安全风险因子识别与评估方法 347
    10.1.1草原区大型煤电基地开发生态安全风险关键胁迫因子识别 347
    10.1.2风险评估路径 348
    10.1.3大型煤电基地开发区域生态风险评估方法 350
    10.2大型煤电基地生态安全监测系统架构和模型 350
    10.2.1大型煤电基地地表生态监测参数与风险评价模型 352
    10.2.2大型煤电基地气象监测参数与动态采集模式 353
    10.2.3大型煤电基地大气环境监测参数与动态采集模式 355
    10.3草原区大型煤电基地生态安全风险评估与预警 356
    10.3.1系统总体设计 357
    10.3.2系统功能及应用 364
    结束语 367
    参考文献 369
    Contents
    Foreword
    Preface
    1The ecological response of high intensity development area of large-scale coal and electricity bases 1
    1.1Definition of large-scale coal and electricity bases ecosystem and its response characteristics to high intensity coal mining 1
    1.1.1Definition of large-scale coal and electricity bases in eastern grassland area 1
    1.1.2Ecosystem of large-scale coal and electricity bases 4
    1.2Long term change of vegetation in eastern grassland and its driving forces 6
    1.2.1Change trend of vegetation greenness in eastern grassland from 1985 to 2020 7
    1.2.2Analysis method of driving forces of grassland ecosystem change 13
    1.2.3Ecosystem change of typical grassland area based on NPP 15
    1.2.4Driving force analysis of NPP change in eastern grassland 20
    1.3Change characteristics of ecological environment elements of typical coal and electricity bases in eastern grassland area 25
    1.3.1Air 25
    1.3.2Topographic features 28
    1.3.3Change of surface vegetation 31
    1.3.4Soil quality 39
    1.3.5Temporal and spatial accumulation characteristics of the impact of high intensity development of coal and electricity bases on grassland ecology 51
    2Degradation mechanism of grassland ecosystem under the disturbance of coal and electricity bases development 56
    2.1Influence mechanism of high intensity development of coal and electricity bases on grassland ecological environment 56
    2.1.1Impact model on the ecological environment of grassland 56
    2.1.2Impact path on the ecological environment of grassland 58
    2.1.3Impact mechanism on grassland ecological environment 58
    2.2Impact of high intensity open pit mining on grassland soil and vegetation in coal and electricity bases 60
    2.2.1Dynamic change of soil moisture 60
    2.2.2Dynamic changes of soil nutrients 65
    2.2.3Succession law of plant community 66
    2.2.4Response mechanism of soil-vegetation system 69
    2.3Influence of high intensity mining in coal mine on soil and vegetation in grassland area 72
    2.3.1Dynamic change of soil moisture 72
    2.3.2Dynamic changes of soil nutrients 80
    2.3.3Succession law of grassland plant community during mining 81
    2.3.4Response mechanism of grassland soil-vegetation system under coal mining 86
    3Change rule of microecosystem driven by high intensity mining in coal and electricity bases 90
    3.1Temporal and spatial variation of grassland vegetation driven by high intensity mining 90
    3.1.1Vegetation succession law driven by mining 90
    3.1.2Nutrient cycling process of grassland soil and vegetation driven by mining 97
    3.1.3Spatial correlation between vegetation and soil in eastern grassland driven by mining 102
    3.2Microecological evolution law driven by coal mining 104
    3.2.1Change characteristics of microecosystem in mining area 104
    3.2.2Functional structure change and main influencing factors of microecosystem in mining area 108
    3.2.3Functional structure characteristics of microecosystem in mining area 110
    3.2.4Influence factors of functional structure change of mining area microecosystem 112
    3.3Response mechanism and ecological cumulative effect of microecosystem driven by mining 113
    3.3.1Response mechanism of microecosystem driven by mining 113
    3.3.2Change trend of microecosystem under the control of stress factors 115
    3.3.3Ecological cumulative effect of microecosystem driven by mining 115
    4Assessment of cumulative effect of ecology in large-scale coal and electricity bases development area 117
    4.1Determination of cumulative land impact in high-intensity mining area 117
    4.1.1A method for determining the cumulative influence boundary of land in high intensity mining area 117
    4.1.2Extraction results of cumulative impact boundary of land in high intensity mining area 119
    4.1.3Change trend of land cumulative effect in high-intensity mining area 125
    4.2Determination of vegetation impact boundary in high intensity mining area 135
    4.2.1A method to determine the boundary of vegetation cumulative impact in high intensity mining areas 135
    4.2.2Extraction results of cumulative impact boundary of vegetation in high intensity mining areas 135
    4.2.3Change trend of vegetation cumulative effect in high intensity mining area 136
    4.3Impact of air pollution in large coal power base development area 142
    4.3.1Inversion method of air pollution accumulation process in high intensity mining area 142
    4.3.2Cumulative impact boundary of air pollution in high intensity mining area 143
    4.3.3Trend of cumulative effect of air pollution in high intensity mining area 143
    4.4Ecological cumulative effect assessment and threshold model analysis method of coal power base development 144
    4.4.1Main characterization parameters of ecological cumulative state 144
    4.4.2Thinking of modeling for ecological accumulation analysis of coal power development 147
    4.4.3Mathematical model of ecological damage 148
    4.4.4Incentive element coupling algorithm 150
    5Assessment of cumulative effect of pollution from large-scale open-pit mining in grassland area 152
    5.1Characteristics and information extraction of typical contaminated sites 152
    5.1.1Ecological factors and mining response characteristics of large open-pit mining area 152
    5.1.2Types and characteristics of typical polluted sites in large open-pit mining areas 156
    5.1.3Information extraction of typical polluted sites in high intensity mining area 158
    5.2Change detection of cumulative effect of high-intensity mining site-polluted area-mining area 160
    5.2.1Site recognition based on multi-scale features and active learning 160
    5.2.2Remote sensing image contaminated area detection based on improved UNet twin network 162
    5.2.3Mining area scene of super resolution reconstruction of open-pit mine based on texture transfer 164
    5.3Mining area scene of super resolution reconstruction of open-pit mine based on texture transfer 166
    5.3.1Determination of ecological cumulative range of mining area 166
    5.3.2Ecological edge effect of polluted areas by intensive mining 169
    5.3.3Soil ecological accumulative quality in high intensity mining contaminated areas 171
    5.3.4Relationship between human disturbance and ecological quality change of mining site 176
    5.3.5Assessment of ecological accumulation effect in high intensity mining contaminated areas,taking heavy metals as an example 178
    5.4Comprehensive assessment of ecological cumulative risk of large open-pit mines in grassland area:a case study of Baorixile open-pit mine 180
    5.4.1Natural disaster hazard 180
    5.4.2Cumulative degree of mining activities 181
    5.4.3Impact degree of animal husbandry activities 183
    5.4.4Comprehensive ecological cumulative risk assessment of Baorixile open-pit mine from 184
    5.4.5Ecological effect and threshold analysis methods 185
    6Evaluation of influence and cumulative effect of groundwater system driven by coal mining 188
    6.1Assessment model of cumulative effect of groundwater system under the driving of open-pit mining 188
    6.1.1Time-space definition of cumulative effect of groundwater system influence 189
    6.1.2Determination of indicators for cumulative effect of groundwater system impact 191
    6.1.3Evaluation method of cumulative effect of groundwater system under open-pit mining 193
    6.2Intelligent collection of cumulative effect data of groundwater system in the area affected by open-pit mining 197
    6.2.1Layout of data acquisition points in mining affected areas 198
    6.2.2Intelligent data acquisition system for mining affected areas 200
    6.2.3Data collection of cumulative effects of groundwater system changes in mining affected areas 201
    6.3Cumulative effect model and boundary identification of groundwater system impacts driven by high intensity mining 206
    6.3.1Cumulative effect of groundwater system in open-pit mining driven by high intensity mining 206
    6.3.2Cumulative effect of underground water system influence driven by high intensity mining 210
    6.3.3High intensity exploitation of groundwater and its ecological impact assessment 211
    7Landscape ecological impact of large-scale coal and electricity bases in eastern grassland 216
    7.1Landscape ecological types and spatial pattern division of large-scale coal and electricity bases in grassland area 216
    7.1.1Main landscape types and structural characteristics of large-scale coal and electricity bases 216
    7.1.2Landscape pattern division of large-scale coal and electricity bases 218
    7.1.3Function of main landscape types in large coal power bases 222
    7.2Effects of intensive large-scale mining on grassland landscape ecology 223
    7.2.1Analysis of landscape pattern evolution driven by high intensity mining 223
    7.2.2Characteristics of soil and water loss driven by high intensity mining 230
    7.2.3Landscape ecological health assessment of grassland coal and electricity bases 233
    7.3Evolution and habitat characteristics of pastoral and mineral ecotone in large-scale coal and electricity bases in grassland area 242
    7.3.1Regional definition and characteristics of the pastoral mineral ecotone 242
    7.3.2Characteristics of community structure in pastoral mining ecotone 243
    7.3.3Habitat characteristics of the pastoral mineral ecotone 247
    8Ecological stability of coal and electricity bases in grassland area 256
    8.1Research method of ecological stability of large-scale coal and electricity bases 256
    8.1.1Overview of ecological stability 256
    8.1.2Overview of mechanism of ecological stability maintenance 258
    8.1.3Research method of ecological stability based on ecosystem 259
    8.1.4Research method of ecological stability based on landscape pattern 261
    8.1.5Research method of ecosystem stability of large coal power base 263
    8.2Study on regional ecological stability of large-scale coal and electricity bases 266
    8.2.1NDVI change characteristics and driving factors of regional vegetation in large-scale coal and electricity bases 266
    8.2.2Spatial differentiation characteristics and driving factors of vegetation in eastern grassland 276
    8.2.3Characteristics of grassland vegetation roots and spatial differentiation of community construction in inner mongolia 279
    8.3The stability of mining area ecosystem in large-scale coal and electricity bases 283
    8.3.1Influence of engineering factors of waste dump on slope stability of waste dump 283
    8.3.2Influence of vegetation roots on the stability of waste dump slope 287
    8.3.3Influence of the compound effect of vegetation factors and engineering factors on slope stability 289
    8.4Ecological stability evaluation of large-scale coal and electricity bases 293
    8.4.1Slope stability of waste dump in mining area 293
    8.4.2Plant community stability of waste dump in mining area 294
    8.4.3Ecological stability evaluation of large-scale coal and electricity bases 297
    9Evaluation methods and control factors of regional ecological security of large-scale coal and electricity bases 313
    9.1Overview of ecological carrying capacity and ecological security 313
    9.1.1Overview of ecological carrying capacity 313
    9.1.2Overview of ecological security 317
    9.2Ecological security evaluation method based on ecological carrying capacity 321
    9.2.1Theoretical basis for ecological security assessment of waste dump 321
    9.2.2Construction of ecological security evaluation index system 321
    9.2.3Ecological security assessment method 323
    9.2.4Operation of evaluation index system 324
    9.3Regional ecological security assessment of large coal power bases 325
    9.3.1Ecological security assessment of waste dump scale in large-scale coal and electricity bases 325
    9.3.2Ecological security evaluation of large-scale coal and electricity bases at city-mine scale 331
    9.3.3Regional scale ecological security assessment of large-scale coal and electricity bases 343
    10Ecological security monitoring and risk assessment of large-scale coal and electricity bases development areas 347
    10.1Identification and assessment method of ecological security risk factors for large-scale coal and electricity bases development in grassland area 347
    10.1.1Identification of key stress factors of ecological security risks in the development of large-scale coal and electricity bases in grassland areas 347
    10.1.2Risk assessment path 348
    10.1.3Ecological risk assessment method of large-scale coal and electricity bases area 350
    10.2Framework and model of ecological security monitoring system for large-scale coal and electricity bases area 350
    10.2.1Surface ecological monitoring parameters and risk assessment model of large-scale coal and electricity bases 352
    10.2.2Monitoring parameters and dynamic acquisition mode of atmospheric environment in large-scale coal and electricity bases 353
    10.2.3Monitoring parameters and dynamic acquisition mode of atmospheric environment in large-scale coal and electricity bases 355
    10.3Ecological security risk assessment and early warning of large-scale coal and electricity bases in grassland area 356
    10.3.1Overall system design 357
    10.3.2System function and application 364
    Conclusion 367
    References 369
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证