0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 方程/动力系统 > 动力系统VII:可积系统,不完整动力系统

相同语种的商品

浏览历史

动力系统VII:可积系统,不完整动力系统


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
动力系统VII:可积系统,不完整动力系统
  • 书号:9787030234940
    作者:Arnol'd
  • 外文书名:Dynamical Systems Ⅶ:Integrable Systems,Nonholonomic Dynamical Systems
  • 装帧:圆脊精装
    开本:B5
  • 页数:356
    字数:430
    语种:英文
  • 出版社:科学出版社
    出版时间:2016-03-21
  • 所属分类:O17 数学分析
  • 定价: ¥158.00元
    售价: ¥124.82元
  • 图书介质:
    按需印刷

  • 购买数量: 件  缺货,请选择其他介质图书!
  • 商品总价:

内容介绍

样章试读

用户评论

全部咨询

This volume contains five surveys on dynamical systems. The first one deals with nonholonomic mechanics and gives an updated and systematic treatment of the geometry of distributions and ofvariational problems with noninteg-rable constraints. The modern language of differential geometry used throughout the survey allows for a clear and tmified exposition of the earlier work on nonholonomic problems. There is a detailed discussion of the dynamical properties of the nonholonomic geodesic flow and of various related concepts, such as nonholonomic exponential mapping, nonholonomic sphere, etc.
Other surveys treatvarious aspects of integrable Hamiltonian systems, with an emphasis on Lie-algebraic constructions. Among the topics covered are: the generalized Calogero-Moser systems based on root systems of simple Lie algebras, a general r-matrix scheme for constructing integrable systems and Lax pairs, links, with finite-gap integration theory, topological aspects of integrable systerms, integrable tops, etc. One of the surveys gives a thorough analysis of a family of quantum integrable systems(Toda lattices)using the machinery of representation theory.
Readers will find all the new differential geometric and Lie-algebraic rnethods which are currently used in the theory ofintegrable systems in this book. It will be indispensable to graduate students and researchers in mathematics and theoretical physics.
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Ⅰ. Nonholonomic Dynamical Systems. Geometry
    Introduction
    Chapter 1 Geometry of Distributions
    §1. Distributions and Related Objects
    1.1. Distributions and Differential Systems
    1.2. Frobenius Theorem and the Flag of a Distribution
    1.3. Codistributions and Pfaffian Systems
    1.4. Regular Distributions
    1.5. Distributions Invariant with Respect to Group Actions and Some Canonical Examples
    1.6. Connections as Distributions
    1.7. A Classification of Left Invariant Contact Structures on Three-Dimensional Lie Groups
    §2. Generic Distributions and Sets of Vector Fields,and Degeneracies of Small Codimension. Nilpotentization and Classification Problem
    2.1. Generic Distributions
    2.2. Normal Forms of Jets of Basic Vector Fields of a Generic Distribution
    2.3. Degeneracies of Small Codimension
    2.4. Generic Sets of Vector Fields
    2.5. Small Codimension Degeneracies of Sets of Vector Fields
    2.6. Projection Map Associated with a Distribution
    2.7. Classifrcaton of Regular Distributions
    2.8. Nilpotentization and Nilpotent Calculus
    Chapter 2 Basic Theory of Nonholonomic Riemannian Manifolds
    §1. General Nonholonomic Variational Problem and the Geodesic Flow on Nonholonomic Riemannian Manifolds
    1.1. Rashevsky-Chow Theorem and Nonholonomic Riemannian Metrics (Carnot-Carathkodory Metrics)
    1.2. Two-Point Problem and the Hopf-Rinow Theorem
    1.3. The Cauchy Problem and the Nonholonomic Geodesic Flow
    1.4. The Euler-Lagrange Equations in Invariant Form and in the Orthogonal Moving Frame and Nonholonomic Geodesics
    1.5. The Standard Form of Equations of Nonholonomic Geodesics for Generic Distributions
    1.6. Nonholonomic Exponential Mapping and the Wave Front
    1.7. The Action Functional
    §2. Estimates of the Accessibility Set
    2.1. The Parallelotope Theorem
    2.2. Polysystems and Finslerian Metrics
    2.3. Theorem on the Leading Term
    2.4. Estimates of Generic Nonholonomic Metrics on Compact Manifolds
    2.5. Hausdorff Dimension of Nonholonomic Riemannian Manifolds
    2.6. The Nonholonomic Ball in the Heisenberg Group as the Limit of Powers of a Riemannian Ball
    Chapter 3 Nonholonomic Variational Problems on Three-Dimensional Lie Groups
    §1. The Nonholonomic &-Sphere and the Wave Front
    1.1. Reduction of the Nonholonomic Geodesic Flow
    1.2. Metric Tensors on Three-Dimensional Nonholonomic Lie Algebras
    1.3. Structure Constants of Three-Dimensional Nonholonomic Lie Algebras
    1.4. Normal Forms of Equations of Nonholonomic Geodesics on Three-Dimensional Lie Groups
    1.5. The Standard Form of Equations of Nonholonomic Geodesics for Generic Distributions
    1.6. Wave Front of Nonholonomic Geodesic Flow,Nonholonomic ε-Sphere and their Singularities
    1.7. Metric Structure of the Sphere SL
    §2. Nonholonomic Geodesic Flow on Three-Dimensional Lie Groups
    2.1. The Monodromy Maps
    2.2. Nonholonomic Geodesic Flow on SO(3)
    2.3. NG-Flow on Compact Homogeneous Spaces of the Heisenberg Group
    2.4. Nonholonomic Geodesic Flows on Compact Homogeneous Spaces of SL,R
    2.5. Nonholonomic Geodesic Flow on Some Special Multidimensional Nilmanifolds
    References
    Additional Bibliographical Notes
    Ⅱ. Integrable Systems Ⅱ
    Introduction
    Chapter 1 Integrable Systems and Finite-Dimensional Lie Algebras (M.A. Olshanetsky. A.M. Perelomov)
    §1. Hamiltonian Systems on Coadjoint Orbits of Lie Groups
    §2. The Moment Map
    §3. The Projection Method
    §4. Description of the Calogero-Sutherland Type Systems
    §5. The Toda Lattice
    §6. Lax Representation. Proof of Complete Integrability
    §7. Explicit Integration of the Equations of Motion
    A) Systems of Calogero Type
    B) Systems of Sutherland Type
    C) Systems with Two Types of Particles
    D) The Nonperiodic Toda Lattice
    §8. Bibliographical Notes
    References
    Chapter 2. Group-Theoretical Methods in the Theory of Finite-Dimensional Integrable Systems (A.G. Reyman. M. A. Semenov-Tian-Shansky)
    Introduction
    §1. Poisson Manifolds
    §2. The R-Matrix Method and the Main Theorem
    2.1. The Involutivity Theorem
    2.2. Factorization Theorem
    2.3. Classical Yang-Baxter Identity and the General Theory of Classical R-Matrices
    2.4. Examples
    2.5. Bibliographical Notes
    §3. Gradings and Orbits. Toda Lattices
    3.1. Graded Algebras
    3.2. First Examples: Toda Lattices
    3.3. Solutions and Scattering for Toda Lattices
    3.4. Bibliographical Notes
    §4. Affine Lie Algebras and Lax Equations with a Spectral Parameter
    4.1. Construction of Loop Algebras
    4.2. Hierarchies of Poisson Structures for Lax Equations with a Spectral Parameter
    4.3. Structure Theory of Affine Lie Algebras
    4.4. Periodic Toda Lattices
    4.5. Multi-pole Lax Equations
    4.6. Bibliographical Notes
    §5. Hamiltonian Reduction and Orbits of Semi-direct Products
    5.1. Hamiltonian Reduction
    5.2. Examples. Magnetic Cotangent Bundles
    5.3. Orbits of Semi-direct Products
    5.4. Nonabelian Toda Lattices
    5.5. Bibliographical Notes
    §6. Lax Representations of Multi-dimensional Tops
    6.1. Kinematics of the n-dimensional Rigid Body
    6.2. Integrable Top-Like Systems
    6.3. Bibliographical Notes
    §7. Integrable Multi-dimensional Tops and Related Systems
    7.1. (G,K) = (GL(n,R),SO(n)):Multidimensional Tops in Quadratic Potentials. The Neumann System. Multidimensional Rigid Body in Ideal Fluid:The Clebsch Case
    7.2. (G,K) = (SO(p,q),SO(p)xSO(q)):Interacting Tops and Kowalewski Tops. p-dimensional Top Interacting with a Rotator. p-dimensional Lagrange's Heavy Top. Generalized Kowalewski Tops. Three-dimensional Tops Associated with the Lie Algebras eo(4,4) and so(4,3)
    7.3. The Lie Algebra G2 an Exotic SO(4)-Top
    7.4. The Anharmonic Oscillator,the Garnier System and Integrable Quartic Potentials
    7.5. Bibliographical Notes
    §8. The Riemann Problem and Linearization of Lax Equations
    8.1. The Riemann Problem
    8.2. Spectral Data and Dynamics
    8.3. Reconstruction of L(λ) from the Spectral Data
    8.4. Bibliographical Notes
    §9. Completeness of the Integrals of Motion
    9.1. The Case of *(gI(n,C))
    9.2. Complete Integrability for Other Lie Algebras
    9.3. Bibliographical Notes
    §10. The Baker-Akhiezer Functions
    10.1. Solution of the Matrix Riemann Problem
    10.2. Explicit Formulae for the Baker-Akhiezer Functions
    10.3. Example:Algebraic Geometry of the Kowalewski Top
    10.4. Bibliographical Notes
    §11. Equations with an Elliptic Spectral Parameter
    11.1. Elliptic Decomposition
    11.2. Lax Equations with an Elliptic Parameter
    11.3. Multi-pole Lax Equations
    11.4. Riemann Problem,Cousin Problem and Spectral Data
    11.5. Real Forms and Reduction
    11.6. Examples
    11.7. Hierarchies of Poisson Brackets
    11.8. Bibliographical Notes
    §12. Classical R-Matrices. Poisson Lie Groups and Difference Lax Equations
    12.1. Poisson Lie Groups
    12.2. Duality Theory for Poisson Lie Groups
    12.3. Poisson Reduction,Dressing Transformations and Symplectic Leaves of Poisson Lie Groups
    12.4. Lax Equations on Lie Groups
    12.5. Poisson Structure on Loop Groups and Applications
    12.6. Additional Comments
    12.7. Bibliographical Notes
    References
    Chapter 3. Quantization of Open Toda Lattices (M.A. Semenov-Tian-Shansky)
    Introduction
    §1. Reduction of Quantum Bundles
    1.1. Lagrangian Polarizations
    1.2. Reduction of Quantum Bundles
    1.3. The Quantum Version of Kostant's Commutativity Theorem
    1.4. The Generalized Kostant Theorem and Reduction of Quantum Bundles
    1.5. Quantization. The Duflo Homomorphism
    §2. Quantum Toda Lattices
    2.1. Semisimple Lie Groups and Lie Algebras. Notation
    2.2. Toda Lattices:a Geometric Description
    2.3. Toda Lattices:Geometric Quantization
    §3. Spectral Theory of the Quantum Toda Lattice
    3.1. Representations of the Principal Series and Whittaker Functions
    3.2. Analytic Properties of the Whittaker Functions
    3.3. The Spectral Decomposition Theorem
    3.4. Degenerate Toda Lattices
    3.5. The Wave Packets and their Properties
    3.6. Scattering Theory
    3.7. Sketch of a Proof of the Main Theorem
    3.8. Induction Over Rank
    Bibliographical Notes
    References
    Ⅲ. Geometric and Algebraic Mechanisms of the Integrability of Hamiltonian Systems on Homogeneous Spaces and Lie Algebras
    Chapter 1 Geometry and Topology of Hamiltonian Systems
    §1. Symplectic Geometry
    1.1. Symplectic Manifolds
    1.2. Embeddings of Symplectic Manifolds
    1.3. Symplectic Geometry of the Coadjoint Representation
    1.4. Poisson Structures on Lie Algebras
    1.5. Euler Equations
    1.6. Euler Equations Arising in Problems of Mathematical Physics
    §2. Some Classical Mechanisms of Integrability
    2.1. The Hamilton-Jacobi Equation
    2.2. Integration of the Equations of Motion According to Liouville and Stackel
    2.3. Lie's Theorem
    2.4. Liouville's Theorem
    §3. Non-commutative Integration According to Liouville
    3.1. Non-commutative Lie Algebras of Integrals
    3.2. Non-commutative Liouville Theorem
    3.3. Interrelationships of Systems with Commutative and Non-commutative Symmetries
    3.4. Local Equivalence of Commutative and Non-commutative Integration
    §4. The Geometry of the Moment Map
    4.1. The Moment Map
    4.2. Convexity Properties of the Moment Map
    4.3. Multiplicity-free Representations
    §5. The Topology of Surfaces of Constant Energy in Completely Integrable Hamiltonian Systems
    5.1. The Multi-dimensional Case. Classification of Surgery of Liouville Tori
    5.2. The Four-dimensional Case
    5.3. The Case of Four-dimensional Rigid Body
    Chapter 2 The Algebra of Hamiltonian Systems
    §1. Representations of Lie Groups and Dynamical Systems
    1.1. Symplectic Structures Associated with Representations
    1.2. Sectional Operators
    1.3. Integrals of Euler Equations. Shift of the Argument
    1.4. Sectional Operators for Symmetric Spaces
    1.5. Complex Semisimple Series of Sectional Operators.
    1.6. Compact and Normal Series of Sectional Operators
    1.7. Sectional Operators for the Lie Algebra of the Group of Euclidean Motions
    1.8. Sectional Operators for the Lie Algebra Ω(g)
    1.9. Bi-Hamiltonian Properties of Euler Equations on Semisimple Lie Algebras
    §2. Methods of Constructing Functions in Involution
    2.1. Inductive Construction of Integrable Dynamical Systems on Coadjoint Orbits (Chains of Subalgebras)
    2.2. Representations of Lie Groups and Involutive Families of Functions
    2.3. Involutive Families of Functions on Semidirect Sums
    2.4. The Method of Tensor Extensions of Lie Algebras
    §3. Completely Integrable Euler Equations on Lie Algebras
    3.1. Euler Equations on Semisimple Lie Algebras
    3.2. Euler Equations on Solvable Lie Algebras
    3.3. Euler Equations on Non-solvable Lie Algebras with a Non-trivial Radical
    3.4. Integrable Systems and Symmetric Spaces
    3.5. Theorem on the Completeness of Shifted Invariants
    Appendix
    References
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证