0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 代数/数论 > 局部群表示论, θ对应和Langlands-Shahidi方法

相同作者的商品

浏览历史

局部群表示论, θ对应和Langlands-Shahidi方法


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
局部群表示论, θ对应和Langlands-Shahidi方法
  • 书号:9787030380326
    作者:叶扬波,田野
  • 外文书名:p-adic Representations,θ-Correspondance and Langlands-Shahidi Theory
  • 装帧:平装
    开本:B5
  • 页数:148
    字数:190
    语种:eng
  • 出版社:科学出版社
    出版时间:2013/7/26
  • 所属分类:
  • 定价: ¥45.00元
    售价: ¥35.55元
  • 图书介质:
    按需印刷 电子书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

  本书的5篇文章均由2011年6月在北京晨兴数学中心举办的群表示论研讨会的讲稿补充或重写而成,作者都是国际上数论与群表示论方面的著名专家。CorinneBlondel、ColinJ.Bushnell和VincentSécherre的文章从不同的角度由浅入深地阐述了局部群表示理论的最新发展。DavidManderscheid的文章介绍了局部θ对应理论,而FreydoonShahidi的文章则着重论述了Eisenstein级数理论。这些文章都可以作为Langlands纲领的相关领域的入门与深造的重要必读文献。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Preface
    1 Arithmetic of Cuspidal Representations Colin J.Bushnell
    1.1 Cuspidal representations by induction
    1.1.1 Background and notation
    1.1.2 Intertwining and Hecke algebras
    1.1.3 Compact induction
    1.1.4 An example
    1.1.5 A broader context
    1.2 Lattices, orders and strata
    1.2.1 Lattices and orders
    1.2.2 Lattice chains
    1.2.3 Multiplicative structures
    1.2.4 Duality
    1.2.5 Strata and intertwining
    1.2.6 Field extensions
    1.2.7 Minimal elements
    1.3 Fundamental strata
    1.3.1 Fundamental strata
    1.3.2 Application to representations
    1.3.3 The characteristic polynomial
    1.3.4 Nonsplit fundamental strata
    1.4 Prime dimension
    1.4.1 A trivial case
    1.4.2 The general case
    1.4.3 The inducing representation
    1.4.4 Uniqueness
    1.4.5 Summary
    1.5 Simple strata and simple characters
    1.5.1 Adjoint map
    1.5.2 Critical exponent
    1.5.3 Construction
    1.5.4 Intertwining
    1.5.5 Definitions
    1.5.6 Interwining
    1.5.7 Motility
    1.6 Structure of cuspidal representations
    1.6.1 Trivial simple characters
    1.6.2 Occurrence of a simple character
    1.6.3 Heisenberg representations
    1.6.4 A further restriction
    1.6.5 End of the road
    1.7 Endo-equivalence and lifting
    1.7.1 Transfer of simple characters
    1.7.2 Endo-equivalence
    1.7.3 Invariants
    1.7.4 Tame lifting
    1.7.5 Tame induction map for endo-classes
    1.8 Relation with the Langlands correspondence
    1.8.1 The Weil group
    1.8.2 Representations
    1.8.3 The Langlands correspondence
    1.8.4 Relation with tame lifting
    1.8.5 Ramification Theorem
    References
    2 Basic Representation Theory of Reductive p-adic Groups Corinne Blondel
    2.1 Smooth representations of locally profinite groups
    2.1.1 Locally profinite groups
    2.1.2 Basic representation theory
    2.1.3 Smooth representations
    2.1.4 Induced representations
    2.2 Admissible representations of locally profinite groups
    2.2.1 Admissible representations
    2.2.2 Haar measure
    2.2.3 Hecke algebra of a locally profinite group
    2.2.4 Coinvariants
    2.3 Schur´s Lemma and Z-compact representations
    2.3.1 Characters
    2.3.2 Schur´s Lemma and central character
    2.3.3 Z-compact representations
    2.3.4 An example
    2.4 Cuspidal representations of reductive p-adic groups
    2.4.1 Parabolic induction and restriction
    2.4.2 Parabolic pairs
    2.4.3 Cuspidal representations
    2.4.4 Iwahori decomposition
    2.4.5 Smooth irreducible representations are admissible
    References
    3 The Bernstein Decomposition for Smooth Complex Representations of GL_n(F) Vincent S´echerre
    3.1 Compact representations
    3.1.1 The decomposition theorem
    3.1.2 Formal degree of an irreducible compact representation
    3.1.3 Proof of Theorem 1.3
    3.1.4 The compact part of a smooth representation of H
    3.2 The cuspidal part of a smooth representation
    3.2.1 From compact to cuspidal representations
    3.2.2 The group H satisfies the finiteness condition (*)
    3.2.3 The cuspidal part of a smooth representation
    3.3 The noncuspidal part of a smooth representation
    3.3.1 The cuspidal support of an irreducible representation
    3.3.2 The decomposition theorem
    3.3.3 Further questions
    3.4 Modular smooth representations of GL_n(F)
    3.4.1 The l ≠ p case
    3.4.2 The l ≠ p case
    References
    4 LecturesontheLocalTheta Correspondence David Manderscheid
    4.1 Lecture 1
    4.1.1 The Heisenberg group
    4.1.2 The Weil representation
    4.1.3 Dependence on ψ
    4.1.4 Now suppose that W_1 and W_2 are symplectic spaces over F
    4.1.5 Models of ρψ and ωψ
    4.2 Lecture 2
    4.2.1 (Reductive) dual pairs
    4.2.2 Theta correspondence
    4.2.3 An explicit model
    4.3 Lecture 3
    4.3.1 Explicit models of the Weil representation
    4.3.2 Low dimensional examples
    4.3.3 General (conjectural) framework
    References
    5 An Overview of the Theory of Eisenstein Series Freydoon Shahidi
    5.1 Intertwining operators
    5.2 Definitions and the statement of the main theorem
    5.3 Constant term
    5.4 Proof of meromorphic continuation for the rank one case
    5.4.1 Preliminaries
    5.4.2 Truncation
    5.4.3 Truncation of E^T
    5.4.4 The functional equation for ∧^ToE
    5.4.5 Proof of meromorphic continutation
    5.5 Proof of the functional equation
    5.6 Convergence of Eisenstein series
    5.7 Proof of holomorphy for ν∈ia*
    References
    Index
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证