0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 分析/函数论 > 局部域上的调和分析与分形分析及其应用

相同作者的商品

相同语种的商品

浏览历史

局部域上的调和分析与分形分析及其应用


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
局部域上的调和分析与分形分析及其应用
  • 书号:9787030519283
    作者:Su Weiyi(苏维宜)
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:336
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:1900-01-01
  • 所属分类:
  • 定价: ¥128.00元
    售价: ¥101.12元
  • 图书介质:
    按需印刷

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Preface
    Chapter 1 Preliminary 1
    1.1 Galois-eld GF(p) 1
    1.1.1 Galois-eld GF(p), characteristic number p 1
    1.1.2 Algebraic extension-elds of Galois-eld GF(p) 3
    1.2 Structures of local-elds 5
    1.2.1 De-nitions of local-elds 5
    1.2.2 Valued structure of a local-eld Kq 5
    1.2.3 Haar measure and Harr integral on a local-eld Kq 7
    1.2.4 Important subsets in a local-eld Kq 9
    1.2.5 Base for neighborhood system of a local-eld Kq 10
    1.2.6 Expressions of elements in Kq, operations 11
    1.2.7 Important properties of balls in a local-eld Kp 14
    1.2.8 Order structures in a local-eld Kp 15
    1.2.9 Relationship between local-eld Kq and Euclidean space R 18
    Exercises 19
    Chapter 2 Character Group of Local Field Kp 21
    2.1 Character groups of locally compact groups 21
    2.1.1 Characters of groups 21
    2.1.2 Characters and character groups of locally compact groups 21
    2.1.3 Pontryagin dual theorem 22
    2.1.4 Examples 23
    2.2 Character group p of Kp 25
    2.2.1 Properties of p 26
    2.2.2 Character group of p-series-eld Sp 29
    2.2.3 Character group of p-adic-eld Ap 32
    2.3 Some formulas in local-elds 35
    2.3.1 Haar measures of certain important sets in Kp 35
    2.3.2 Integrals for characters in Kp 36
    2.3.3 Integrals for some functions in Kp 38
    Exercises 40
    Chapter 3 Harmonic Analysis on Local Fields 41
    3.1 Fourier analysis on a local-eld Kp 41
    3.1.1 L1-theory 42
    3.1.2 L2-theory 61
    3.1.3 Lr-theory 1<r<2 68
    3.1.4 Distribution theory on Kp 70
    Exercises 83
    3.2 Pseudo-dierential operators on local-elds 83
    3.2.1 Symbol class S 84
    3.2.2 Pseudo-dierential operator on local-elds 87
    3.3 p-type derivatives and p-type integrals on local-elds 89
    3.3.1 p-type calculus on local-elds 90
    3.3.2 Properties of p-type derivatives and p-type integrals 91
    3.3.3 p-type derivatives and p-type integrals 93
    3.3.4 Background of establishing of p-type calculus 96
    3.4 Operator and construction theory of function on local-elds 103
    3.4.1 Operators on a local-eld Kp 104
    3.4.2 Construction theory of function on a local-eld Kp 107
    Exercises 131
    Chapter 4 Function Spaces on Local Fields 132
    4.1 B-type spaces and F-type spaces on local-elds 132
    4.1.1 B-type spaces, F-type spaces 132
    4.1.2 Special cases of B-type spaces and F-type spaces 138
    4.1.3 H.older type spaces on local-elds 139
    4.1.4 Lebesgue type spaces and Sobolev type spaces 144
    Exercises 151
    4.2 Lipschitz classes on local-elds 151
    4.2.1 Lipschitz classes on local-elds 151
    4.2.2 Chains of function spaces on Euclidean spaces 157
    4.2.3 The cases on local-elds 161
    4.2.4 Comparison of Euclidean space analysis with local-eld analysis 162
    Exercises 165
    4.3 Fractal spaces on local-elds 166
    4.3.1 Fractal spaces on Kp 166
    4.3.2 Completeness of space K((Kp);h) on Kp 168
    4.3.3 Some useful transformations on Kp 174
    Exercises 185
    Chapter 5 Fractal Analysis on Local Fields 187
    5.1 Fractal dimensions on local-elds 187
    5.1.1 Hausdor measure and dimension 187
    5.1.2 Box dimension 194
    5.1.3 Packing measure and dimension 199
    Exercises 203
    5.2 Analytic expressions of dimensions of sets in local-elds 204
    5.2.1 Borel measure and Borel measurable sets 204
    5.2.2 distribution dimension 204
    5.2.3 Fourier dimension 214
    Exercises 216
    5.3 p-type calculus and fractal dimensions on local-elds 217
    5.3.1 Structures of Kp, 3-adic Cantor type set,3-adic Cantor type function 217
    5.3.2 p-type derivative and integral ofon K3 222
    5.3.3 p-type derivative and integral of Weierstrass type function on Kp 231
    5.3.4 p-type derivative and integral of second Weierstrass type function on Kp 238
    Exercises 247
    Chapter 6 Fractal PDE on Local Fields 248
    6.1 Special examples 248
    6.1.1 Classical 2-dimension wave equation with fractal boundary 248
    6.1.2 p-type 2-dimension wave equation with fractal boundary 260
    6.2 Further study on fractal analysis over local-elds 272
    6.2.1 Pseudo-di.erential operator 272
    6.2.2 Further problems on fractal analysis over local-elds 288
    Exercises 289
    Chapter 7 Applications to Medicine Science 290
    7.1 Determine the malignancy of liver cancers 290
    7.1.1 Terrible havocs of liver cancer, solving idea 290
    7.1.2 The main methods in studying of liver cancers 294
    7.2 Examples in clinical medicine 297
    7.2.1 Take data from the materials of liver cancers of patients 297
    7.2.2 Mathematical treatment for data 301
    7.2.3 Compute fractal dimensions 306
    7.2.4 Induce to obtain mathematical models 310
    7.2.5 Other problems in the research of liver cancers 310
    References 312
    Index 321
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证