0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 应用数学 > 随机金融引论

相同作者的商品

相同语种的商品

浏览历史

随机金融引论


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
随机金融引论
  • 书号:9787030581440
    作者:严加安
  • 外文书名:
  • 装帧:圆脊精装
    开本:B5
  • 页数:403
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:1900-01-01
  • 所属分类:
  • 定价: ¥178.00元
    售价: ¥140.62元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    1 Foundation of Probability Theory and Discrete-Time Martingales 1
    1.1 Basic Concepts of Probability Theory 1
    1.1.1 Events andProbability 1
    1.1.2 Independence, 0-1 Law, and Borel-Cantelli Lemma 3
    1.1.3 Integrals, (Mathematical) Expectations of Random
    1.1.4 Convergence Theorems 7
    1.2 Conditional Mathematical Expectation 9
    1.2.1 Definition and Basic Properties 9
    1.2.2 Convergence Theorems 14
    1.2.3 Two Theorems About Conditional Expectation 15
    1.3 Duals of Spaces L∞ (Ω,F) and L∞ (Ω,F, m) 17
    1.4 Family of Uniformly Integrable Random Variables 18
    1.5 Discrete Time Martingales 22
    1.5.1 Basic Definitions 22
    1.5.3 Martingale Transforms 27
    1.5.4 Snell Envelop 30
    1.6 Markov Sequences 31
    2 Portfolio Selection Theory in Discrete-Time 33
    2.1 Mean-Variance Analysis 34
    2.1.1 Mean-Variance Frontier Portfolios Without
    2.1.2 Revised Formulations of Mean-Variance Analysis Without Risk-Free Asset 38
    2.1.3 Mean-Variance Frontier Portfolios with Risk-Free
    2.1.4 Mean-Variance Utility Functions 45
    2.2 Capital Asset Pricing Model (CAPM) 47
    2.2.1 Market Competitive Equilibrium and Market Portfolio 47
    2.2.2 CAPM with Risk-Free Asset 49
    2.2.3 CAPM Without Risk-Free Asset 52
    2.2.4 Equilibrium Pricing Using CAPM 53
    2.3 Arbitrage Pricing Theory (APT) 54
    2.4 Mean-Semivariance Model 57
    2.5 Multistage Mean-Variance Model 58
    2.6 Expected Utility Theory 62
    2.6.1 Utility Functions 63
    2.6.2 Arrow-Pratt's Risk Aversion Functions 64
    2.6.3 Comparison of Risk Aversion Functions 66
    2.6.4 Preference Defined by Stochastic Orders 66
    2.6.5 Maximization of Expected Utility and Initial Price of Risky Asset 70
    2.7 Consumption-Based Asset Pricing Models 72
    3 Financial Markets in Discrete Time 75
    3.1 Basic Concepts of Financial Markets 75
    3.1.2 Pricing and Hedging 76
    3.1.3 Put-Call Parity 76
    3.1.4 Intrinsic Value and Time Value 77
    3.1.6 Efficient Market Hypothesis 78
    3.2 Binomial Tree Model 78
    3.2.1 The One-Period Case 78
    3.2.2 The Multistage Case 79
    3.2.3 The Approximately Continuous Trading Case 82
    3.3 The General Discrete-Time Model 83
    3.3.1 The Basic Framework 83
    3.3.2 Arbitrage, Admissible, and Allowable Strategies 85
    3.4 Martingale Characterization of No-Arbitrage Markets 86
    3.4.1 The Finite Market Case 86
    3.4.2 The General Case: Dalang-Morton-Willinger Theorem 87
    3.5 Pricing of European Contingent Claims 90
    3.6 Maximization of Expected Utility and Option Pricing 92
    3.6.1 General Utility Function Case 92
    3.6.2 HARA Utility Functions and Their Duality Case 94
    3.6.3 Utility Function-Based Pricing 96
    3.6.4 Market Equilibrium Pricing 99
    3.7 American Contingent Claims Pricing 103
    3.7.1 Super-Hedging Strategies in Complete Markets 103
    3.7.2 Arbitrage-Free Pricing in Complete Markets 104
    3.7.3 Arbitrage-Free Pricing in Non-complete Markets 105
    4 Martingale Theory and Ito Stochastic Analysis 107
    4.1 Continuous Time Stochastic Processes 107
    4.1.1 Basic Concepts of Stochastic Processes 107
    4.1.2 Poisson and Compound Poisson Processes 108
    4.1.3 Markov Processes 110
    4.1.4 Brownian Motion 113
    4.1.5 Stopping Times, Martingales, Local Martingales 114
    4.1.6 Finite Variation Processes 115
    4.1.7 Doob-Meyer Decomposition of Local Submartingales 116
    4.1.8 Quadratic Variation Processes of Semimartingales 119
    4.2 Stochastic Integrals w.t.t Brownian Motion 124
    4.2.1 Wiener Integrals 124
    4.2.2 Ito Stochastic Integrals 125
    4.3 Ito's Formula and Girsanov's Theorem 130
    4.3.1 Ito's Formula 131
    4.3.2 Levy's Martingale Characterization of Brownian
    4.3.3 Reflection Principle of Brownian Motion 134
    4.3.4 Stochastic Exponentials and Novikov Theorem 134
    4.3.5 Girsanov's Theorem 136
    4.4 Martingale Representation Theorem 137
    4.5 Ito Stochastic Differential Equations 140
    4.5.1 Existence and Uniqueness of Solutions 140
    4.6 Ito Diffusion Processes 147
    4.7 Feynman-Kac Formula 148
    4.8 Snell Envelop (Continuous Time Case) 149
    5 The Black-Scholes Model and Its Modifications 153
    5.1 Martingale Method for Option Pricing and Hedging 154
    5.1.1 The Black-Scholes Model 154
    5.1.2 Equivalent Martingale Measures 155
    5.1.3 Pricing and Hedging of European Contingent Claims 157
    5.1.4 Pricing of American Contingent Claims 160
    5.2 Some Examples of Option Pricing 162
    5.2.1 Options on a Stock with Proportional Dividends 162
    5.2.2 Foreign Currency Option 163
    5.2.3 Compound Option 164
    5.3 Practical Uses of the Black-Scholes Formulas 166
    5.3.1 Historical and Implied Volatilities 166
    5.3.2 Delta Hedging and Analyses of Option Price Sensitivities 166
    5.4 Capturing Biases in Black-Scholes Formulas 168
    5.4.1 CEV Model and Level-Dependent Volatility Model 168
    5.4.2 Stochastic Volatility Model 170
    5.4.3 SABR Model 172
    5.4.4 Variance-Gamma (VG) Model 172
    6 Pricing and Hedging of Exotic Options 175
    6.1 Running Extremum of Brownian Motion with Drift 175
    6.2.1 Single-Barrier Options 179
    6.2.2 Double-Barrier Options 180
    6.3 Asian Options 180
    6.3.1 Geometric Average Asian Options 181
    6.3.2 Arithmetic Average Asian Options 183
    6.4 Lookback Options 189
    6.4.1 Lookback Strike Options 190
    6.4.2 Lookback Rate Options 192
    6.5 Reset Options 193
    7 Ito Process and Diffusion Models 195
    7.1 Ito Process Models 195
    7.1.1 Self-Financing Trading Strategies 195
    7.1.2 Equivalent Martingale Measures and No Arbitrage 197
    7.1.3 Pricing and Hedging of European Contingent Claims 201
    7.1.4 Change of Numeraire 203
    7.1.5 Arbitrage Pricing Systems 205
    7.2 PDE Approach to Option Pricing 208
    7.3 Probabilistic Methods for Option Pricing 209
    7.3.1 Time and Scale Changes 209
    7.3.2 Option Pricing in Merton's Model 210
    7.3.3 General Nonlinear Reduction Method 211
    7.3.4 Option Pricing Under the CEV Model 212
    7.4 Pricing American Contingent Claims 214
    8 Term Structure Models for Interest Rates 217
    8.1 The Bond Market 218
    8.1.1 Basic Concepts 218
    8.1.2 Bond Price Process 219
    8.2 Short Rate Models 220
    8.2.1 0ne-Factor Models and Affine Term Structures 221
    8.2.2 Functional Approach to One-Factor Models 225
    8.2.3 Multifactor Short Rate Models 229
    8.2.4 Forward Rate Models: The HJM Model 231
    8.3 Forward Price and Futures Price 234
    8.3.1 Forward Price 234
    8.3.2 Futures Price 235
    8.4 Pricing Interest Rate Derivatives 236
    8.4.1 PDE Method 236
    8.4.2 Forward Measure Method 239
    8.4.3 Changing Numeraire Method 239
    8.5 The Flesaker-Hughston Model 242
    8.6 BGM Models 244
    9 Optimal Investment-Consumption Strategies in Diffusion Models 247
    9.1 Market Models and Investment-Consumption Strategies 247
    9.2 Expected Utility Maximization 250
    9.3 Mean-Risk Portfolio Selection 258
    9.3.1 General Framework for Mean-Risk Models 258
    9.3.2 Weighted Mean-Variance Model 259
    10 Static Risk Measures 263
    10.1 Coherent Risk Measures 263
    10.1.1 Monetary Risk Measures and Coherent Risk Measures 264
    10.1.2 Representation of Coherent Risk Measures 266
    10.2 Co-monotonic Subadditive Risk Measures 268
    10.2.1 Representation: The Model-Free Case 269
    10.2.2 Representation: The Model-Dependent Case 272
    10.3 Convex Risk Measures 274
    10.3.1 Representation: The Model-Free Case 274
    10.3.2 Representation: The Model-Dependent Case 275
    10.4 Co-monotonic Convex Risk Measures 276
    10.4.1 The Model-Free Case 276
    10.4.2 The Model-Dependent Case 278
    10.5 Law-Invariant Risk Measures 280
    10.5.1 Law-Invariant Coherent Risk Measures 280
    10.5.2 Law-Invariant Convex Risk Measures 285
    10.5.3 Some Results About Stochastic Orders and Quantiles 286
    10.5.4 Law-Invariant Co-monotonic Subadditive Risk
    10.5.5 Law-Invariant Co-monotonic Convex Risk Measures 298
    11 Stochastic Calculus and Semimartingale Model 307
    11.1 Semimartingales and Stochastic Calculus 308
    11.1.1 Doob-Meyer's Decomposition of Supermartingales 308
    11.1.2 Local Martingales and Semimartingales 310
    11.1.3 Stochastic Integrals wrt Local Martingales 311
    11.1.4 Stochasticlntegrals wrt Semimartingales 313
    11.1.5 Ito's Formula and Doleans Exponential Formula 314
    11.2 Semimartingale Model 315
    11.2.1 Basic Concepts and Notations 316
    11.2.2 Vector Stochastic Integrals wrt Semimartingales 318
    11.2.3 Optional Decomposition Theorem 319
    11.3 Superhedging 321
    11.4 Fair Prices and Attainable Claims 322
    12 Optimal Investment in Incomplete Markets 327
    12.1 Convex Duality on Utility Maximization 328
    12.1.1 The Problem 328
    12.1.2 Complete Market Case 329
    12.1.3 Incomplete Market Case 330
    12.1.4 Results of Kramkov and Schachermayer 332
    12.2 A Numeraire-Free Framework 334
    12.2.1 Martingale Deflators and Superhedging 335
    12.2.2 Reformulation of Theorem 12.1 337
    12.3 Utility-Based Approaches to Option Pricing 338
    12.3.1 Minimax Martingale Deflator Approach 338
    12.3.2 Marginal Utility-Based Approach 340
    13 Martingale Method for Utility Maximization 343
    13.1 Expected Utility Maximization and Valuation 344
    13.1.1 Expected Utility Maximization 344
    13.1.2 Utility-Based Valuation 346
    13.2 Minimum Relative Entropy and Maximum Hellingerlntegral 348
    13.2.1 HARA Utility Functions 348
    13.2.2 Another Type of Utility Function 350
    13.2.3 Utility Function W0(x)=-e-x 351
    13.3 Market Driven by a Levy Process 352
    13.3.1 The Market Model 352
    13.3.2 Results for HARA Utility Functions 354
    13.3.3 Results for Utility Functions of the Form Wy(y<0) 359
    13.3.4 Results for Utility Function W0(x)=-e-x 359
    14 Optimal Growth Portfolios and Option Pricing 365
    14.1 OptimalGrowthPortfolio 365
    14.1.1 OptimalGrowth Strategy 366
    14.1.2 A Geometric Levy Process Model 367
    14.1.3 A Jump-Diffusion-Like Process Model 373
    14.2 Pricing in a Geometric Levy Process Model 377
    14.3 Other Approaches to Option Pricing 383
    14.3.1 The Follmer-Schwarzer Approach 383
    14.3.2 The Davis' Approach 383
    14.3.3 Esscher Transform Approach 384
    References 387
    Index 397
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证