0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: 图书分类 > 数学 > 分析/函数论 > 泛函分析导论(英文版)(第二版)

相同语种的商品

浏览历史

泛函分析导论(英文版)(第二版)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
泛函分析导论(英文版)(第二版)
  • 书号:9787030614766
    作者:Yisheng Huang
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:289
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:1900-01-01
  • 所属分类:
  • 定价: ¥88.00元
    售价: ¥69.52元
  • 图书介质:
    纸质书

  • 购买数量: 件  商品库存: 1
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

泛函分析的发展始于20世纪30年代,主要研究对象是定义在无限维线性空间上的泛函和算子,它为数学物理方程、计算数学、量子物理学、概率论、控制论、最优化理论、自然科学和工程等的研究提供了基本的方法和基础知识,是现代分析的基础之一,也历来是数学系学生需要掌握的一门重要课程。该课程的一些基本知识传授是培养学生提高数学的分析能力和抽象思维能力的一种理想的途径。

本教材是学习泛函分析课程的一本入门教材,是针对中国学生编写的一本英文教材,在选材上吸收了国外的优秀本科生教材的一些精华;在编写上考虑了与中国学生所具备的基础知识衔接性,在充分地反映泛函分析中的核心内容的前提下,突出重点;在内容的处理上,体现了由浅入深,循序渐进的原则,用大量的例题对度量空间、赋范线性空间、线性算子与线性泛函、内积空间与各种算子及它们的谱分解的概念、关系、性质进行了演绎、推导与论证,书后的索引有中英文对照翻译,便于读者自学。本书配有200多道练习题(部分习题附有提示),为读者掌握泛函分析方法提供必要的训练。


样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Preface i
    Introduction iii
    List of Symbols vii
    Chapter 1 Metric Spaces 1
    1.1 Preliminaries 1
    1.2 Definitions and Examples 6
    1.3 Convergence of Sequences in Metric Spaces 12
    1.4 Sets in a Metric Space 17
    1.5 Complete Metric Spaces 25
    1.6 Continuous Mappings on Metric Spaces 33
    1.7 Compact Metric Spaces 38
    1.8 Banach Fixed Point Theorem 46
    Chapter 2 Normed Linear Spaces. Banach Spaces 57
    2.1 Review of Linear Spaces 57
    2.2 Norms in Linear Spaces 59
    2.3 Examples of Normed Linear Spaces 65
    2.4 Finite-Dimensional Normed Linear Spaces 77
    2.5 Linear Subspaces of Normed Linear Spaces 83
    2.6 Quotient Spaces 90
    2.7 Weierstrass Approximation Theorem 94
    Chapter 3 Inner Product Spaces. Hilbert Spaces 101
    3.1 Inner Products 101
    3.2 Orthogonality 114
    3.3 Orthonormal Systems 123
    3.4 Fourier Series 138
    Chapter 4 Linear Operators. Fundamental Theorems 145
    4.1 Bounded Linear Operators and Functionals 145
    4.2 Spaces of Bounded Linear Operators and Dual Spaces 162
    4.3 Banach-Steinhaus Theorem 173
    4.4 Inverses of Operators. Banach's Theorem 180
    4.5 Hahn-Banach Theorem 190
    4.6 Strong and Weak Convergence 203
    Chapter 5 Linear Operators on Hilbert Spaces 215
    5.1 Adjoint Operators. Lax-Milgram Theorem 215
    5.2 Spectral Theorem for Self-adjoint Compact Operators 229
    Chapter 6 Differential Calculus in Normed Linear Spaces 257
    6.1 Gateaux and Frechet Derivatives 257
    6.2 Taylor's Formula, Implicit and Inverse Function Theorems 270
    Bibliography 279
    Index 283
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证