0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: > Finite Element and Reduced Dimension Methods for Partial Differential Equations(偏微分方程的有限元和降维方法)

相同语种的商品

浏览历史

Finite Element and Reduced Dimension Methods for Partial Differential Equations(偏微分方程的有限元和降维方法)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
Finite Element and Reduced Dimension Methods for Partial Differential Equations(偏微分方程的有限元和降维方法)
  • 书号:9787030775443
    作者:罗振东
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:652
    字数:
    语种:en
  • 出版社:科学出版社
    出版时间:2024-10-01
  • 所属分类:
  • 定价: ¥198.00元
    售价: ¥156.42元
  • 图书介质:
    纸质书

  • 购买数量: 件  商品库存: 7
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

该书共5章,分别介绍有限元和混合有限元理论基础及其应用。最精彩的是第4和第5章,详细介绍非定常偏微分方程有限元法中的有限元空间和有限元未知解系数向量的降维方法,可将含数十万乃至上千万未知量的有限元迭代方程降阶成为只有很少几个未知量的降阶方程,理论和数值例子都证明了两种降维方法的正确性和有效性。这些降维方法都是作者原创性的工作,这些方法都已经在国际重要刊物发表。该书很详细做了介绍。这些方法的推广应用,将会带动计算数学向更高度发展。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Basic Theory of Standard Finite Element Method 1
    1.1 The Basic Principles of Functional Analysis 1
    1.1.1 Linear Operator and Linear Functional 1
    1.1.2 Orthogonal Proj ection and Riesz Representation Theorem 4
    1.1.3 Smooth Approximation and Fundamental Lemma of Calculus of Variation 5
    1.1.4 Generalized Derivatives and Sobolev Spaces 6
    1.1.5 Imbedding and Trace Theorems of Sobolev Spaces 9
    1.1.6 Equivalent Module (Norm) Theorem 11
    1.1.7 Green’s Formulas, Riesz-Thorin,s Theorem,Interpolation Inequality, and Closed Range Theorem 18
    1.1.8 Fixed Point Theorems 20
    1.2 Well-Posedness of Partial Differential Equations 21
    1.2.1 The Classification for the Partial Differential Equations 21
    1.2.1.1 Physical Classification for Partial Differential Equations 21
    1.2.1.2 Mathematical Classification for Partial Differential Equations 21
    1.2.1.3 The Second-Order Eq (1.2.2) Does Not Change Its Fomi under the Invertible Transformation 22
    1.2.1.4 The Classification According to Characteristic Line 23
    1.2.1.5 The Classification for the System of Partial Differential Equations 25
    1.2.2 Lax-Milgram Theorem 26
    1.2.3 Examples of Application for the Lax-Milgram Theorem 29
    1.2.4 Differentiability (Regularity) of Generalized Solutions 41
    1.3 Basic Theories of Function Interpolations 44
    1.3.1 Finite Element and Related Properties 44
    1.3.2 Properties of Finite Element Space and Inverse Estimation Theorem 46
    1.3.3 Function Interpolation and Properties 55
    1.3.4 The Interpolation Estimates in the Sobolev Spaces 58
    1.4 Function Interpolations on Triangle Elements 63
    1.4.1 Lagrange Linear Interpolation on the Triangle Elements 63
    1.4.2 Lagrange’s Quadratic Interpolation on the Triangle Elements 66
    1.4.3 Lagrange’s Cubic Interpolation on the Triangle Elements 68
    1.4.4 Restricted Lagrange Cubic Interpolation 71
    1.4.5 Cubic Hermite Interpolation on the Triangle Elements 74
    1.4.5.1 Complete Cubic Hermite Interpolation on the Triangle Elements 74
    1.4.5.2 Restricted Hermite Cubic Interpolation on the Triangle Elements 78
    1.4.6 Quintic Hermite Interpolation on the Triangle Elements 80
    1.4.6.1 Quintic Hermite Interpolation with 21 Degrees of Freedom 80
    1.4.6.2 Quintic Hermite Interpolation with 18 Degrees of Freedom 81
    1.4.7 Clough Interpolation on the Triangular Elements 89
    1.4.8 Modified Clough Interpolation on the Triangular Elements 90
    1.4.9 Morley,s Interpolation on the Triangle Elements 91
    1.5 Function Interpolation on the Tetrahedral Element 92
    1.5.1 Lagrange Linear Interpolation on the Tetrahedral Elements 92
    1.5.2 Lagrange Quadratic Interpolation on the Tetrahedrons 96
    1.5.3 Lagrange Cubic Interpolation on the Tetrahedral Elements 98
    1.5.4 Hermite Cubic Interpolation with 20 Degrees of Freedom on the Tetrahedral Elements 100
    1.5.5 Restricted Hermite Cubic Interpolation on the Tetrahedral Elements with 16 Degrees of Freedom 105
    1.6 Interpolation of Functions on Rectangular Elements 110
    1.6.1 Bilinear Lagrange Interpolation on the Rectangular Element 111
    1.6.2 Biquadratic Lagrange Interpolation on the Rectangles 114
    1.6.3 Incomplete Biquadratic Lagrange Interpolation on the Rectangular Elements 116
    1.6.4 Complete Bicubic Hermite Interpolation on Rectangles 119
    1.6.5 Incomplete Bicubic Hermite Interpolation on Rectangular 122
    1.7 Function Interpolation on Arbitrary Quadrilaterals 126
    1.7.1 Bilinear Interpolation on the Arbitrary Quadrilateral 132
    1.7.2 Complete Biquadratic Interpolation on the Quadrilateral 133
    1.7.3 Incomplete Biquadratic Interpolation on the Quadrilateral 135
    1 _ 8 Function Interpolation on Hexahedron Elements 136
    1.8.1 Interpolation Basis Functions on the Standard Cube 137
    1.8.1.1 Trilinear Interpolation Basis Functions on the Standard Cube 137
    1.8.1.2 The Basis Functions of Incomplete Triquadratic Interpolation on the Standard Cube 138
    1.8.2 Function Interpolation on the Arbitrary Hexahedron 139
    1.8.2.1 Trilinear Interpolation on the Arbitrary Hexahedral Elements 146
    1.8.2.2 Incomplete Triquadratic Interpolation on the Arbitrary Hexahedral Elements 146
    1.9 Convergence and Error Estimates of Finite Element Solutions 148
    1.9.1 Projection Theorem and Galerkin Approximation 148
    1.9.2 Finite Element Approximation for the First Homogeneous Boundary Value Problem of Poisson Equation 150
    1.9.2.1 Error Estimates for the Finite Element Solution of First Homogeneous Boundary Value Problem of Poisson Equation 150
    1.9.2.2 L2 Projection and Its Properties 153
    1.9.2.3 L°° Estimate for the FE Solution of First Homogeneous Boundary Value Problem of Poisson Equation 157
    1.9.3 Error Analysis of Finite Element Solution for the Biharmonic Equation 158
    1.9.3.1 The Conforming FE Analysis of Biharmonic Equation 158
    1.9.3.2 The Non-Conforming FE Analysis of Biharmonic Equation 162
    2 Basic Theory of Mixed Finite Element Method 171
    2.1 Mixed Generalized Solutions of Mixed Variational Problems 172
    2.1.1 Mixed Generalized Solutions of Biharmonic Equation 172
    2.1.2 Mixed Generalized Solutions of Poisson Equation 173
    2.1.3 Mixed Generalized Solutions for Elastic Mechanic Problem 175
    2.1.4 Mixed Generalized Solutions of Steady Stokes Problem 177
    2.1.5 Abstract Mixed Generalized Problem 178
    2.2 Existence and Uniqueness of Generalized Solutions for Mixed Variational Problems 180
    2.2.1 The Stranger Sufficient Conditions for Existing Unique Mixed Generalized Solutions 180
    2.2.2 The Weaker Sufficient Conditions for Existing Unique Mixed Generalized Solutions 185
    2.3 Examples of Existence and Uniqueness of Generalized Solutions for Mixed Variational Problems 191
    2.3.1 Existence and Uniqueness of Mixed Generalized Solutions for the Biharmonic Equation 191
    2.3.2 Existence and Uniqueness of Mixed Generalized Solutions for the First Homogeneous Boundary Value Problem of the Poisson Equation 193
    2.3.3 Existence and Uniqueness of Mixed Generalized Solutions for the Elasticity Mechanics Problem 195
    2.3.4 Existence and Uniqueness of Mixed Generalized Solutions for the Steady Stokes Problem 197
    2.4 Existence and Error Estimations for Mixed Finite Element Solutions 199
    2.4.1 The Existence and Uniqueness for the Mixed Finite Element Solutions Under the Stranger Conditions 199
    2.4.2 The Error Estimate of Mixed Finite Element Solutions Under the Stranger Conditions 202
    2.4.3 The Existence, Uniqueness, and Error Estimates of Mixed Finite Element Solutions Under the Weaker Conditions 206
    2.5 Existence and Uniqueness of Mixed Finite Element Solutions for the Biharmonic Equation 211
    2.5.1 Ciarlet-Raviart Mixed Finite Element Format for the Fourth Order Biharmonic Equation 212
    2.5.2 The Hermann-Miyoshi Mixed Finite Element Format for the Biharmonic Equation 218
    2.5.3 The Hermann-Johnson Mixed Finite Element Formulation for the Biharmonic Equation 221
    2.6 Mixed Finite Element Formats of Poisson Equation 223
    2.6.1 Raviart-Thomas5 Mixed Finite Element Formulation for the Poisson Equation 224
    2.6.1.1 Construct Function Space Q on the Standard Element K 226
    2.6.1.2 Discuss (H5) in General Triangle Element K eh 230
    2.6.2 Linear Mixed Finite Element Format of the Poisson Equation 239
    2.6.3 Convergence and a Posterior Error Estimate for Simplified Stabilization Linear Mixed Finite Element Format 245
    2.6.3.1 Simplified Stabilization Linear MFE Format 245
    2.6.3.2 Convergence for Simplified Stabilization Linear MFE Solutions 248
    2.6.3.3 A Posterior Error Estimate for Simplified Stabilization Linear MFE Solutions 252
    2.6.4 Quadratic Mixed Finite Element for the Poisson Equation 255
    2.7 Mixed Finite Element Formats for Elastic Mechanics 260
    2.7.1 Johnson-Mercier5s Mixed Finite Element Format for Elastic Mechanic Problem 261
    2.7.2 Linear Mixed Finite Element Format for Elasticity Problem 275
    2.7.3 Convergence and a Posterior Error Estimate for Simplified Stabilization Linear Mixed Finite Element Format 281
    2.7.3.1 Simplified Stabilization Linear MFE Format 281
    2.7.3.2 Convergence and a Posterior Error Estimate for the Simplified Stabilization Linear Element Solutions 287
    2.7.4 Quadratic Mixed Element Format for Elasticity Problem 289
    2.8 Mixed Finite Element Formats for Steady Stokes Equation 295
    2.8.1 Basic Theory of the Mixed Finite Element Method for the Steady Stokes Equation 295
    2.8.2 First Order Mixed Finite Element Format of Triangulation for the Steady Stokes Equation 298
    2.8.3 The First and Second Order Mixed Finite Element Formats Based on Bubble Function for the Steady Stokes Equation 301
    2.8.4 The Improved First and Second Order Mixed Finite Element Formats for the Steady Stokes Equation 305
    2.8.5 Simplified Stabilization First and Second Order Mixed Finite Element Formats for the Steady Stokes Problem 307
    2.8.6 Convergence of Simplified Stabilization Mixed Finite Element Solutions for the Steady Stokes Equation 310
    2.8.7 A posteriori Error Estimation for the Mixed Finite Element Solutions of Steady Stokes Equation 312
    2.9 Mixed Finite Element Method for Steady Boussinesq Equation 316
    2.9.1 Existence and Uniqueness of Generalized Solutions for the Steady Boussinesq Equation 316
    2.9.2 Existence of Mixed Finite Element Solutions for the Steady Boussinesq Equation 326
    2.9.3 Error Estimation of Mixed Finite Element Solutions for the Steady Boussinesq Equation 333
    3 Mixed Finite Element Methods for the Unsteady Partial Differential Equations 337
    3.1 Mixed Finite Element Method and Numerical Simulation of the Burgers Equation 337
    3.1.1 Existence and Uniqueness of Mixed Generalized Solutions of the Burgers Equation 338
    3.1.2 Existence and Error Estimation of Semi-discretized Mixed Finite Element Solutions for the Burgers Equation 341
    3.1.3 Existence and Error Estimation of Fully Discretized Mixed Finite Element Solutions 347
    3.1.4 Numerical Simulations for the Fully Discretized Mixed Finite Element Solutions of the Burgers Equation 351
    3.2 Mixed Finite Element Method for RLW Equation and Numerical Simulations 355
    3.2.1 Existence of Mixed Generalized Solutions for RLW Equation 355
    3.2.2 Existence and Error Estimation of Semi-discretized Mixed Element Solutions for the RLW Equation 357
    3.2.3 Existence and Error Estimation of Fully Discretized Mixed Finite Element Solutions for RLW Equation 362
    3.2.4 A Lowest Order Difference Scheme Based on Mixed Finite Element Method and Numerical Simulations 366
    3.3 Mixed Finite Element Method for Unsaturated Flow Problem and Its Numerical Simulations 371
    3.3.1 Existence of Generalized Solutions to Unsaturated Soil Flow Problem 371
    3.3.2 Existence and Error Estimation of Semi-discretized Mixed Finite Element Solutions 377
    3.3.3 Existence and Error Estimations of Fully Discretized Mixed Finite Element Solutions 381
    3.3.4 Numerical Simulation of the Unsaturated Flow Problem 384
    3.4 The Mixed Finite Element Method for the Unsteady Boussinesq Equation 388
    3.4.1 Existence and Uniqueness of Generalized Solutions for the Unsteady Boussinesq Equation 389
    3.4.2 Existence and Error Estimation of Semi-discretized Mixed Finite Element Solutions of Boussinesq Equation 398
    3.4.2.1 Existence and Uniqueness of the SDMFE Solutions 398
    3A.2.2 Error Analysis of the SDMFE Solutions 403
    3.4.3 Existence and Error Estimations of Fully Discretized Mixed Finite Element Solutions for the Boussinesq Equation 409
    3.4.4 A Difference Scheme Based on Mixed Finite Element Method and Numerical Test of Boussinesq Equation 420
    3.5 The Mixed Finite Element Method of the Improved System of Time-Domain Maxwell’s Equations 432
    3.5.1 Establish the Improved System of Maxwell’s Equations 434
    3.5.2 Existence and Uniqueness of Generalized Solutions for the Improved System of Maxwell’s Equations 436
    3.5.3 The Time Semi-discretized Method for the Improved System of Time-Domain Maxwell’s Equations 438
    3.5.4 The Fully Discretized Crank-Nicolson Mixed Finite Element Method for the System of Maxwell’s Equations 449
    3.5.5 Two Set of Numerical Simulations of Maxwell’s Equations 457
    3.5.6 The Crank-Nicolson Mixed Finite Element Method for the 3D Improved System of Maxwell’s Equations 459
    4 The Reduced Dimension Methods of Finite Element Subspaces for Unsteady Partial Differential Equations 465
    4.1 The Basis Theory of Reduced-Dimension for Finite Element Subspaces 466
    4.1.1 The Brief of Finite Element or Mixed Finite Methods for the Unsteady Partial Differential Equations 466
    4.1.2 Continuous Proper Orthogonal Decomposition Method 468
    4.2 The Reduced-Dimension Method of Finite Element Subspace for
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证