0去购物车结算
购物车中还没有商品,赶紧选购吧!
当前位置: > 矩阵理论及其应用(英)

相同语种的商品

浏览历史

矩阵理论及其应用(英)


联系编辑
 
标题:
 
内容:
 
联系方式:
 
  
矩阵理论及其应用(英)
  • 书号:9787030757388
    作者:邱启荣,韩励佳,魏军强
  • 外文书名:
  • 装帧:平装
    开本:B5
  • 页数:197
    字数:262000
    语种:zh-Hans
  • 出版社:科学出版社
    出版时间:2023-09-01
  • 所属分类:
  • 定价: ¥88.00元
    售价: ¥69.52元
  • 图书介质:
    纸质书

  • 购买数量: 件  可供
  • 商品总价:

相同系列
全选

内容介绍

样章试读

用户评论

全部咨询

本书内容全面,系统性强,涵盖了国内工科研究生对矩阵论的几乎全部知识点,并在教学结构上进行了创新的优化和调整。本书包含五章内容。第一章为对线性代数知识的回顾,第二章介绍线性空间的定义、赋范线性空间、内积空间;第三章介绍线性变换;第四章介绍若当标准型及详细的矩阵分析及矩阵函数等内容;第五章介绍矩阵分解、广义逆、Kronecor积等及其在求解矛盾方程组和矩阵方程中的各种应用。更好的体现了知识的融会贯通及应用。
样章试读
  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

全部咨询(共0条问答)

  • 暂时还没有任何用户咨询内容
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询内容:

目录

  • Contents
    Chapter 1 Basics of Linear Algebra 1
    1.1 Basic operations of matrices 2
    1.1.1 Addition for matrices 3
    1.1.2 Scalar multiplication of matrix A 4
    1.1.3 Matrix multiplication 5
    1.1.4 Identity matrix 6
    1.1.5 Transposition matrix and conjugate transpose of matrix A
    1.1.6 Matrix inversion 7
    1.1.7 Symmetries 8
    1.2 Determinants 11
    1.2.1 Determinant definition 11
    1.2.2 Properties of determinants 12
    1.2.3 Cofactor 14
    1.2.4 Cramer’s rule 18
    1.3 Elementary operations 21
    1.3.1 Elementary row transformation 21
    1.3.2 Reduced echelon form 23
    1.3.3 Rank of matrix 25
    1.3.4 Solving equations by elementary transformation 26
    1.4 Linear independence 30
    1.5 Exercises 35
    Chapter 2 Linear Space 40
    2.1 Set and map 40
    2.2 Linear space 41
    2.3 Basis, dimension and coordinates 47
    2.4 Change of basis 58
    2.5 Exercises 62
    Chapter 3 Normed Linear Space and Inner Product Space 66
    3.1 Normed linear space and matrix norm 66
    3.1.1 Normed linear space 66
    3.1.2 Norm of matrix 68
    3.2 Inner product spaces 71
    3.2.1 Inner product 71
    3.2.2 Representation of inner product 77
    3.2.3 Orthogonality and Schmidt’s orthogonalization method 79
    3.3 Application of norm-preliminary matrix analysis 88
    3.3.1 The limit of matrix sequence 88
    3.3.2 Matrix series 90
    3.3.3 Matrix power series 92
    3.3.4 Differentiation and integration of matrices 95
    3.4 Exercises 96
    Chapter 4 Linear Transformation 101
    4.1 Linear transformation 101
    4.2 Matrix of linear transformation .109
    4.3 Eigenvalues and eigenvectors .119
    4.4 Eigenvalues and eigenvectors for matrix 22
    4.5 Exercises 26
    Chapter 5 Jordan Normal Form of Matrix and Matrix Function 31
    5.1 Diagonalization 131
    5.2 Jordan normal form of matrix A 35
    5.3 Minimum polynomial 146
    5.4 Matrix functions 150
    5.4.1 Matrix function by infinite series 50
    5.4.2 General definition and calculation of matrix function 155
    5.4.3 Applications 159
    5.5 Exercises 63
    Chapter 6 Applications of Matrix Theory in Linear Equations and Matrix
    Equations 66
    6.1 Matrix factorization and application in linear equations 166
    6.1.1 The LU factorization and applications 166
    6.1.2 Applications in solving linear equations 172
    6.2 Minus inverse and applications in compatible linear equations 174
    6.3 Plus inverse of matrix and the minimal norm least square solutions of linear equations 182
    6.3.1 Plus inverse of matrix 182
    6.3.2 Plus inverse of matrix 185
    6.3.3 Minimal norm least square solution of linear equations 187
    6.4 Kronecker product and applications in matrix equations 189
    6.4.1 Definitions and properties of Kronecker product 190
    6.4.2 Applications in matrix equations 193
    6.5 Exercises 196
    References 198
帮助中心
公司简介
联系我们
常见问题
新手上路
发票制度
积分说明
购物指南
配送方式
配送时间及费用
配送查询说明
配送范围
快递查询
售后服务
退换货说明
退换货流程
投诉或建议
版权声明
经营资质
营业执照
出版社经营许可证